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In [14] Nagell showed that there are infinitely many imaginary quad-
ratic extensions of the rational number field Q, each of which has class
number divisible by a given integer. Subsequently several authors have
proved this result (see [1], [4], [5] and [17] as well as the most recent proof
by Uehara [16]). In this paper we generalize this well-known result by
explicit construction o infinitely many imaginary quadratic extensions of
a given number field K (subject only to having a totally ramified rational
prime) each with class number divisible by a given integer. The proof
and construction given is simpler than that given in previous proofs cited
above for the trivial case K-Q, and applications are given. The next
result is a sufficient condition for an arbitrary quadratic extension of Q to
have an element of given order in its class group. Finally for a certain
class of real quadratic extensions of Q we give a sufficient condition for
its class number to be divisible by a given prime, and we provide applica-
tions.

Before presenting the first result some comments on notation and a
lemma are required. For a given number field K, h(K) denotes the class
number of K, C denotes the class group of K, ( denotes the ring of
integers of K, (c) or cr e (C) denotes the principal ideal generated by c, and
N(.) denotes the norm from K to Q.

In the proof of Theorem 1 we will need the following result whose
proof (mutatis mutandis) is the same as that of [1, Lemma 1, p. 321] of
which the following lemma is a generalization.

Lemma 1o Let be any positive real number and let p be any odd
prime. Denote by N the number of square-free integers of the form p--x
where x is an even integer such that Oxp/2. Then for g sufficiently
large, N_cpep/2 where cp is a positive c,nstant depending only on p.

Theorem 1. Let tl be any integer. If K is any algebraic number
field in which there is a totally ramified rational odd prime p, then there
are infinitely many imaginary quadratic extensions L of K such that t h(L).
Moreover L may be chosen of the form K(/-) where n is any square-free
rational integer of the form n=r2--m where p does not divide n and r is
an even integer subject to r_mt-l(m-1).

Proof. Let r be an arbitrarily chosen but fixed even integer. Let n
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be an integer of the form n--r-m where m is any odd integer with r_
m-(m-1) and p does not divide n. By [7, Corollary 2.6] t lh(Q(/W)).
Therefore there exists an abelian unramified extension E of F=Q(/W)
with IE" Fl=t. By Abhyankar’s Lemma (see [2] or [3]) KE(JW) is an
unramified extension o K(/W). Moreover we claim that KE=F. To
see this we recall that p does not ramify in F since p ails to divide n.
Since p is totally ramified in K and ramification degrees multiply in towers
then any Q(/W)-prime above p is totally ramified in K(/W). This proves
the claim. Hence rom [6, Theorem 7, p. 263] it ollows that KE(/W) is
of degree t over K(/W). The llowing diagram describes the situation"

KE(/W)

K(/W)
t

E

K

To conclude the proof of the. theorem it remains to show that there are
infinitely many square-free integers of the form =--m where r is even,
_<m-(m--1) and p does not divide .

Let s=[(p--1)/p]/ and let k be sufficiently large such that
satisfies the hypothesis of Lemma 1; that is, the number N of square-free
integers of the form m--, with m=p, and 0<<sm/ is greater than

esm/. Since s is fixed and % is a positive constant depending only on p
then k may be chosen such that N is as large as we want. .E.D.

The following application to biquadratie fields is immediate from
Theorem 1.

Corollary 1o Let K=Q(/-g) where s is any square-free integer, and
let F=Q(/W) where g.c.d. (n, 2s)=l, n=r--m is square-free, r_
mt-(m-1) and r even, then t]h(KF). (In fact t lh(F).)

The following is an application to imaginary quadratic extensions of
pure fields of prime degree (see Mollin [11, pp. 421-423]).

Corollary 2. Let K=Q(/) where p is an odd prime, and let n be
a square-free integer of the form n=r-m relatively prime to.p and with
r even, and r_m-(m-1); then t lh(K(/W)).

The. reader may compare the. above with Mollin [8, pp. 166-168] where
conditions for the. divisibility of the class numbers of imaginary quadratic
extensions of cyclotomic fields by a power of 2 are given.

We now turn to establishing a sufficient condition for any quadratic
field to have an element of order t 1 in its class group for a given integer t.

Theorem 2. Let K--Q(/W), where n-a--4b is a square-free integer
where b l and tl are integers. If +_ b is not the norm of any element
of ( for all c properly dividing t then t divides the exponent of C.
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Proof. Let b--p’...pa where the p’s are distinct rational primes
and the a’s are positive integers. Clearly each p splits in K, so

LP where LP and are (-primes or i-1, 2, ..., r. Let a-(a+/W)/2
and --(a--/--)/2, then (b)t=()= l-[--1 (LP)a. Since +-a, (_)2
-n and g.c.d. (a, b)-I (whence g.c.d. (a, n)-l), then LP divides both
and e only if 1 is in LP. Therefore, for an appropriate choice of

(.=jt say. If is principal foror we must have that ()--(I-[=-
any c properly dividing t then N(j)=

_
b violates the hypothesis. Hence

/ is an element of order t in C i.e., t divides the exponent of C. Q.E.D.
Maintaining the notation of Theorem 2 we have"
Corollary : (Mollin [7, Corollary 2.4]). If n-a2-4btO and a<_

4bt-l(b--1) then t divides h(K).
Note that if t divides the exponent of C then there is a non-principal

ideal such that 5--(c) for some a e (C), but 5 is not principal for any c
properly dividing t. Therefore if a=(a+s/)/2 then a--sm=4bt where
N()=b i.e., K=Q(/--)=Q(/) for n=sm. Is the converse of Theorem
2 valid?; i.e., is it true that if t divides the exponent of L’ then +_b is
not the norm of any / e ( for all c properly dividing t? Note that if
such a fl exists then N(5)=N(fl). However this does not necessarily
imply that 5 is principal. Is there some restriction on K such that the
condition "___ b is not a norm of an integer in (C)" becomes necessary and
sufficient for t to divide the exponent of L’? Compare the above with
Uehara [16, Theorem 2, p. 257].

We now turn to the real quadratic field case.

Proposition 1. Let K--Q(/W) where n is a square-free integer of the
form n=a2+tPl (mod4) where aO and tl are integers and p is a
prime. Suppose furthermore that n=(st)2+r7 where the following con-
ditions are satisfied"

(i) sl, t not a square and g.c.d. (t, r)-l.
(ii) r divides 4s with 2sr<_ 2s

then p divides h(K).
Pro.of. By Mollin [9, Theorem 1.2] x--ny2=+__t is not solvable in

integers (x, y), and so by Mollin [10, Theorem 3], p divides h(K). Q.E.D.
The following table provides examples as an application of Proposition 1.

Table I

r s a p n h(n)

1 3 1 1 2 10 2
1 5 1 1 2 26 2
1 9 1 1 2 82 4
1 11 1 1 2 122 2
1 13 1 1 2 170 4

--2 3 5 14 3 223 3
1 15 1 1 2 226 8

--2 3 7 14 5 439 5
4 9 3 4 3 733 3
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All class numbers are taken from B. Oriat’s "Groupes des Cla.sses des
Corps Quadratiques R6els Q(/d), d<10, 000", Facult6 des Sciences de

Besanon.
Finally we note that Proposition 1 has relevance to the representation

o integers as sums o powerful numbers, (see [12] and [13]), a difficult
problem in elementary number theory.
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