9. The Number of Embeddings of Integral Quadratic Forms. II*)

By Rick Miranda**) and David R. Morrison***)
(Communicated by Kunihiko Kodaira, m. J. A., Jan. 13, 1986)

This is a continuation of our previous note [5], to which we refer the reader for definitions and notation.

1. Introduction. Let $\phi: M \rightarrow L$ be a primitive embedding from a nondegenerate integral quadratic form M into an indefinite unimodular integral quadratic form L. In [5] we showed that the number of equivalence classes of primitive embeddings from M into L coincides with a certain invariant $e(N)$ of the orthogonal complement N of M in L. (We also proved a similar statement for (α, β)-equivalence classes and the invariant $e_{\alpha \beta}(N)$.) In this note, we give an effective procedure for calculating these invariants $e(N)$ and $e_{\alpha \beta}(N)$ when N is indefinite with rank at least three. This extends some work of Nikulin [6], who gave sufficient conditions for $e(N)$ to be 1 (under the same hypotheses on N). The proofs, together with some applications to algebraic geometry, will be given elsewhere.
2. The structure of finite quadratic forms. A finite quadratic form is a finite abelian group G together with a map $q: G \rightarrow \boldsymbol{Q} / \boldsymbol{Z}$ such that the induced map $b: G \times G \rightarrow \boldsymbol{Q} / \boldsymbol{Z}$ defined by $b(x, y)=q(x+y)-q(x)-q(y)$ is \boldsymbol{Z} bilinear, and such that $q(n x)=n^{2} q(x)$ for all $n \in Z$ and $x \in G$. G is called nondegenerate if the adjoint map $\operatorname{Ad} b: G \rightarrow \operatorname{Hom}(G, \boldsymbol{Q} / \boldsymbol{Z})$ of the associated bilinear form b is injective.

We recall from Wall [8] and Durfee [2] the basic structure of a nondegenerate finite quadratic form G, using the notation of Brieskorn [1]. The Sylow decomposition $G=\oplus_{p} G_{p}$ is an orthogonal direct sum decomposition with respect to the form q; moreover, each Sylow subgroup G_{p} admits an orthogonal direct sum decomposition into groups of ranks one and two of the following types:
(i) If $p \neq 2$ and $\varepsilon= \pm 1, w_{p, k}^{\varepsilon}$ denotes $Z / p^{k} Z$ with a generator x such that the quadratic map is given by $q(x)=p^{-k} u(\bmod \boldsymbol{Z})$ for some $u \in \boldsymbol{Z}$ with $(u, p)=1$ and $\left(\frac{2 u}{p}\right)=\varepsilon$, where $(-)$ is the Legendre symbol.
(ii) If $\varepsilon \in(Z / 8 Z)^{\times}, w_{2, k}^{e}$ denotes $\boldsymbol{Z} / 2^{k} \boldsymbol{Z}$ with a generator x such that $q(x)$ $=2^{-k-1} u(\bmod Z)$ for some $u \in Z$ with $u \equiv \varepsilon(\bmod 8)$.

[^0](iii) $\quad u_{k}$ (or v_{k}) denotes $\boldsymbol{Z} / 2^{k} \boldsymbol{Z} \times \boldsymbol{Z} / 2^{k} \boldsymbol{Z}$ with a basis x, y such that $q(x)=q(y)$ $=0$ and $q(x+y)=2^{-k}(\bmod Z)\left(\right.$ or $\left.q(x)=q(y)=q(x+y)=2^{-k}(\bmod Z)\right)$.
Note that when $p \neq 2$, this implies that G_{p} can be diagonalized (it is a direct sum of the rank one groups $w_{p, k}^{\varepsilon}$).

When $p=2$, there are in general many ways of decomposing G_{2} into an orthogonal direct sum of groups of ranks one and two. The following proposition singles out a special kind of decomposition which will be useful later.

Proposition. A nondegenerate finite quadratic form on a 2-group G_{2} has an orthogonal direct sum decomposition

$$
G_{2} \cong \bigoplus_{k \geq 1}\left(u_{k}^{n(k)} \oplus v_{k}^{m(k)} \oplus w(k)\right)
$$

such that $m(k) \leq 1$, $\operatorname{rank}(w(k)) \leq 2$, and $w(k)$ is a sum of forms of type $w_{2, k}^{\varepsilon}$.
The proof, which we omit, is entirely analogous to that of a lemma of Miranda [4].

A fundamental invariant of a nondegenerate finite quadratic form on a p-group G_{p} is the discriminant disc $\left(G_{p}\right)$ introduced by Nikulin [6]. This is an element of the group $\boldsymbol{Z}_{p} /\left(\boldsymbol{Z}_{p}^{\times}\right)^{2}$ of p-adic integers modulo squares of units; it is always defined when $p \neq 2$, and is defined for $p=2$ if and only if $w(1)=0$ for a decomposition of G_{2} as in the proposition.

We recall the definition of the discriminant for the forms of ranks one and two :
(i) If $p \neq 2$, $\operatorname{disc}\left(w_{p, k}^{s}\right)=p^{k} u$, where $u \in Z_{p}$ with $(u, p)=1$ and $\left(\frac{u}{p}\right)=\varepsilon$.
(ii) If $k \geq 2$, $\operatorname{disc}\left(w_{2, k}^{e}\right)=2^{k} u$, where $u \in Z_{2}$ with $u \equiv \varepsilon(\bmod 8)$.
(iii) $\operatorname{disc}\left(u_{k}\right)=2^{2 k}$, $\operatorname{disc}\left(v_{k}\right)=3 \cdot 2^{2 k}$.

The discriminant multiplies under direct sum, so the above data is sufficient to compute disc (G_{p}) from any decomposition of G_{p} into forms of ranks one and two.
3. The computation of $e(N)$ and $e_{\alpha \beta}(N)$. Let N be a nondegenerate integral quadratic form, let $G_{N}=\operatorname{Coker}(\operatorname{Ad} b: N \rightarrow \operatorname{Hom}(N, Z))$ be the discriminant-form of N, which is a nondegenerate finite quadratic form, and let $G_{N_{p}}$ be the p-Sylow subgroup of G. For each prime number p, we will define two invariants of N and p, which can be effectively computed once N and G_{N} are known. These invariants are a natural number $e_{p}(N)$ and a subgroup $\tilde{\Sigma}\left(N_{p}\right)$ of $\{+,-\} \times\{+,-\}$. We describe $\tilde{\Sigma}\left(N_{p}\right)$ by giving its order $f_{p}(N)$, and, in case the order is 2 , by specifying the nontrivial element, which we call the type.

Definition. Let N be a nondegenerate integral quadratic form and p a prime number. Let $l\left(G_{N_{p}}\right)$ denote the minimum number of generators of $G_{N_{p}}$, and let disc (N) denote the discriminant of N, which is the determinant of the matrix of the bilinear form b of N in any basis.
(i) If $p \neq 2$, let $\Delta=\operatorname{disc}(N) / \operatorname{disc}\left(G_{N_{p}}\right)$. Then $e_{p}=e_{p}(N), f_{p}=f_{p}(N)$, and the type of $\tilde{\Sigma}\left(N_{p}\right)\left(\right.$ when $\left.f_{p}(N)=2\right)$ are defined by Table I.

Table I

$\operatorname{rank}(N)-l\left(G_{N_{p}}\right)$	$p \bmod 4$	$\left(\frac{2 \Delta}{p}\right)$	e_{p}	f_{p}	type
≥ 2			1	4	
1	1	1	2	4	
1	3	-1	2	2	$(+,-)$
	1	1	2	2	$(-,+)$
		-1	2	2	$(-,-)$
			4	2	$(+,-)$

(ii) If $p=2$, choose a decomposition of $G_{N_{2}}$ as in Proposition, let $s(k)=$ $n(k)+m(k)$ for $k \geq 1$, and let $s(0)=(1 / 2)\left(\operatorname{rank}(N)-l\left(G_{N_{2}}\right)\right)$. If $s(0)=$ $s(1)=0$ and $w(1)$ has rank 1 , let

$$
G^{\prime} \cong \bigoplus_{k \geq 2}\left(u_{k}^{n(k)} \oplus v_{k}^{m(k)} \oplus w(k)\right)
$$

and define $\Delta=\operatorname{disc}(N) / 2 \operatorname{disc}\left(G^{\prime}\right)$. Then $e_{2}=e_{2}(N), f_{2}=f_{2}(N)$ and the type of $\tilde{\Sigma}\left(N_{2}\right)$ (when $\left.f_{2}(N)=2\right)$ are defined by Table II.
Theorem. Let N be a nondegenerate integral quadratic form which is indefinite and has rank at least 3. Let $e_{p}(N)$ and $\tilde{\Sigma}\left(N_{p}\right)$ be as defined above, and let $\tilde{\Sigma}(N)=\bigcap_{p} \tilde{\Sigma}\left(N_{p}\right)$. Then
(i) $\quad e_{++}(N)=\prod_{p} e_{p}(N)$. (All but finitely many of the terms in this product are 1).
(ii) If $\tilde{\Sigma}(N)=\{+,-\} \times\{+,-\}$ then $e(N)=e_{\alpha \beta}(N)=e_{++}(N)$ for all $\alpha, \beta \in$ \{+, -$\}$.
(iii) If $\tilde{\Sigma}(N)=\{(+,+),(\alpha, \beta)\}$ for some $(\alpha, \beta) \neq(+,+)$, then $e_{\alpha \beta}(N)=e_{++}(N)$, while $e(N)=e_{\gamma \delta}(N)=(1 / 2) e_{++}(N)$ for $(\gamma, \delta) \neq(\alpha, \beta),(+,+)$.
(iv) If $\tilde{\Sigma}(N)=\{(+,+)\}$, then $e(N)=(1 / 4) e_{++}(N)$ and

$$
e_{+-}(N)=e_{-+}(N)=e_{--}(N)=(1 / 2) e_{++}(N)
$$

The proof will be given elsewhere. The main tools used in the proof are Kneser's strong approximation theorem for the spin group [3], and a refinement of the factorization theorem for local integral isometries due to O'Meara and Pollak [7].

References

[1] E. Brieskorn: Die Milnorgitter der exzeptionellen unimodularen Singularitäten. Bonner Math. Schr., vol. 150 (1983).
[2] A. H. Durfee: Bilinear and quadratic forms on torsion modules. Advances in Math., 25, 133-164 (1977).
[3] M. Kneser: Klassenzahlen indefiniter quadratischer Formen in drei oder mehr Veränderlichen. Arch. Math. (Basel), 7, 323-332 (1956).
[4] R. Miranda: Nondegenerate symmetric bilinear forms on finite abelian 2-groups. Trans. Amer. Math. Soc., 284, 535-542 (1984).

Table II

[5] R. Miranda and D. R. Morrison: The number of embeddings of integral quadratic forms. I. Proc. Japan Acad., 61A, 317-320 (1985).
[6] V. V. Nikulin: Integral symmetric bilinear forms and some of their applications. Izv. Akad. Nauk SSSR, 43, 111-177 (1979) ; Math. USSR Izvestija, 14, 103-167 (1980).
[7] O. T. O'Meara and B. Pollak: Generation of local integral orthogonal groups. Math. Z., 87, 385-400 (1965).
[8] C. T. C. Wall: Quadratic forms on finite groups, and related topics. Topology, 2, 281-298 (1963).

[^0]: *) Research partially supported by the National Science Foundation and the Japan Society for the Promotion of Science.
 **) Department of Mathematics, Colorado State University.
 ***) Research Institute for Mathematical Sciences, Kyoto University and Department of Mathematics, Princeton University.

