9. The Number of Embeddings of Integral Quadratic Forms. II^{*)}

By Rick MIRANDA**) and David R. MORRISON***)

(Communicated by Kunihiko KODAIRA, M. J. A., Jan. 13, 1986)

This is a continuation of our previous note [5], to which we refer the reader for definitions and notation.

1. Introduction. Let $\phi: M \to L$ be a primitive embedding from a nondegenerate integral quadratic form M into an indefinite unimodular integral quadratic form L. In [5] we showed that the number of equivalence classes of primitive embeddings from M into L coincides with a certain invariant e(N) of the orthogonal complement N of M in L. (We also proved a similar statement for (α, β) -equivalence classes and the invariant $e_{\alpha\beta}(N)$.) In this note, we give an effective procedure for calculating these invariants e(N) and $e_{\alpha\beta}(N)$ when N is indefinite with rank at least three. This extends some work of Nikulin [6], who gave sufficient conditions for e(N) to be 1 (under the same hypotheses on N). The proofs, together with some applications to algebraic geometry, will be given elsewhere.

2. The structure of finite quadratic forms. A finite quadratic form is a finite abelian group G together with a map $q: G \rightarrow Q/Z$ such that the induced map $b: G \times G \rightarrow Q/Z$ defined by b(x, y) = q(x+y) - q(x) - q(y) is Zbilinear, and such that $q(nx) = n^2q(x)$ for all $n \in Z$ and $x \in G$. G is called nondegenerate if the adjoint map Ad $b: G \rightarrow \text{Hom}(G, Q/Z)$ of the associated bilinear form b is injective.

We recall from Wall [8] and Durfee [2] the basic structure of a nondegenerate finite quadratic form G, using the notation of Brieskorn [1]. The Sylow decomposition $G = \bigoplus_p G_p$ is an orthogonal direct sum decomposition with respect to the form q; moreover, each Sylow subgroup G_p admits an orthogonal direct sum decomposition into groups of ranks one and two of the following types :

- (i) If $p \neq 2$ and $\varepsilon = \pm 1$, $w_{p,k}^{\varepsilon}$ denotes $Z/p^{\varepsilon}Z$ with a generator x such that the quadratic map is given by $q(x) = p^{-k}u \pmod{Z}$ for some $u \in Z$ with (u, p) = 1 and $\left(\frac{2u}{p}\right) = \varepsilon$, where $\left(-\right)$ is the Legendre symbol.
- (ii) If $\varepsilon \in (Z/8Z)^{\times}$, $w_{2,k}^{\varepsilon}$ denotes $Z/2^{k}Z$ with a generator x such that $q(x) = 2^{-k-1}u \pmod{Z}$ for some $u \in Z$ with $u \equiv \varepsilon \pmod{8}$.

^{*&#}x27; Research partially supported by the National Science Foundation and the Japan Society for the Promotion of Science.

^{**)} Department of Mathematics, Colorado State University.

^{***&#}x27; Research Institute for Mathematical Sciences, Kyoto University and Department of Mathematics, Princeton University.

(iii) u_k (or v_k) denotes $Z/2^k Z \times Z/2^k Z$ with a basis x, y such that q(x) = q(y)=0 and $q(x+y) = 2^{-k} \pmod{Z}$ (or $q(x) = q(y) = q(x+y) = 2^{-k} \pmod{Z}$).

Note that when $p \neq 2$, this implies that G_p can be diagonalized (it is a direct sum of the rank one groups $w_{p,k}^{\varepsilon}$).

When p=2, there are in general many ways of decomposing G_2 into an orthogonal direct sum of groups of ranks one and two. The following proposition singles out a special kind of decomposition which will be useful later.

Proposition. A nondegenerate finite quadratic form on a 2-group G_2 has an orthogonal direct sum decomposition

$$G_2 \cong \bigoplus_{k \ge 1} \left(u_k^{n(k)} \oplus v_k^{m(k)} \oplus w(k) \right)$$

such that $m(k) \leq 1$, rank $(w(k)) \leq 2$, and w(k) is a sum of forms of type $w_{2,k}^{\varepsilon}$.

The proof, which we omit, is entirely analogous to that of a lemma of Miranda [4].

A fundamental invariant of a nondegenerate finite quadratic form on a *p*-group G_p is the discriminant disc (G_p) introduced by Nikulin [6]. This is an element of the group $Z_p/(Z_p^{\times})^2$ of *p*-adic integers modulo squares of units; it is always defined when $p \neq 2$, and is defined for p=2 if and only if w(1)=0 for a decomposition of G_2 as in the proposition.

We recall the definition of the discriminant for the forms of ranks one and two :

(i) If
$$p \neq 2$$
, disc $(w_{p,k}^{\varepsilon}) = p^{k}u$, where $u \in \mathbb{Z}_{p}$ with $(u, p) = 1$ and $\left(\frac{u}{p}\right) = \varepsilon$.

(ii) If $k \ge 2$, disc $(w_{2,k}^{\varepsilon}) = 2^k u$, where $u \in \mathbb{Z}_2$ with $u \equiv \varepsilon \pmod{8}$.

(iii) $\operatorname{disc}(u_k) = 2^{2k}$, $\operatorname{disc}(v_k) = 3 \cdot 2^{2k}$.

The discriminant multiplies under direct sum, so the above data is sufficient to compute disc (G_p) from any decomposition of G_p into forms of ranks one and two.

3. The computation of e(N) and $e_{a\beta}(N)$. Let N be a nondegenerate integral quadratic form, let $G_N = \operatorname{Coker} (\operatorname{Ad} b : N \to \operatorname{Hom} (N, \mathbb{Z}))$ be the discriminant-form of N, which is a nondegenerate finite quadratic form, and let G_{N_p} be the p-Sylow subgroup of G. For each prime number p, we will define two invariants of N and p, which can be effectively computed once N and G_N are known. These invariants are a natural number $e_p(N)$ and a subgroup $\tilde{\Sigma}(N_p)$ of $\{+, -\} \times \{+, -\}$. We describe $\tilde{\Sigma}(N_p)$ by giving its order $f_p(N)$, and, in case the order is 2, by specifying the nontrivial element, which we call the type.

Definition. Let N be a nondegenerate integral quadratic form and p a prime number. Let $l(G_{N_p})$ denote the minimum number of generators of G_{N_p} , and let disc (N) denote the discriminant of N, which is the determinant of the matrix of the bilinear form b of N in any basis.

(i) If $p \neq 2$, let $\Delta = \operatorname{disc}(N)/\operatorname{disc}(G_{N_p})$. Then $e_p = e_p(N)$, $f_p = f_p(N)$, and the type of $\tilde{\Sigma}(N_p)$ (when $f_p(N) = 2$) are defined by Table I.

30

$\operatorname{rank}(N) - l(G_{N_p})$	$p \mod 4$	$\left(\frac{2\varDelta}{p}\right)$	e_p	f_p	type
≥ 2			1	4	
1	1	1	2	4	
	1	-1	2	2	(+, -)
	3	1	2	2	(-, +)
		-1	2	2	(-, -)
0	1		4	2	(+, -)
	3		4	1	

Table I

(ii) If p=2, choose a decomposition of G_{N_2} as in Proposition, let s(k)=n(k)+m(k) for $k\geq 1$, and let $s(0)=(1/2)(\operatorname{rank}(N)-l(G_{N_2}))$. If s(0)=s(1)=0 and w(1) has rank 1, let

$$G' \cong \bigoplus_{k \ge 2} (u_k^{n(k)} \oplus v_k^{m(k)} \oplus w(k))$$

and define $\Delta = \operatorname{disc}(N)/2 \operatorname{disc}(G')$. Then $e_2 = e_2(N)$, $f_2 = f_2(N)$ and the type of $\tilde{\Sigma}(N_2)$ (when $f_2(N)=2$) are defined by Table II.

Theorem. Let N be a nondegenerate integral quadratic form which is indefinite and has rank at least 3. Let $e_p(N)$ and $\tilde{\Sigma}(N_p)$ be as defined above, and let $\tilde{\Sigma}(N) = \bigcap_p \tilde{\Sigma}(N_p)$. Then

- (i) $e_{++}(N) = \prod_{p} e_{p}(N)$. (All but finitely many of the terms in this product are 1).
- (ii) If $\tilde{\Sigma}(N) = \{+, -\} \times \{+, -\}$ then $e(N) = e_{\alpha\beta}(N) = e_{++}(N)$ for all $\alpha, \beta \in \{+, -\}$.
- (iii) If $\tilde{\Sigma}(N) = \{(+, +), (\alpha, \beta)\}$ for some $(\alpha, \beta) \neq (+, +)$, then $e_{\alpha\beta}(N) = e_{++}(N)$, while $e(N) = e_{\lambda}(N) = (1/2)e_{++}(N)$ for $(7, \delta) \neq (\alpha, \beta), (+, +)$.

(iv) If
$$\tilde{\Sigma}(N) = \{(+, +)\}$$
, then $e(N) = (1/4)e_{++}(N)$ and

 $e_{+-}(N) = e_{-+}(N) = e_{--}(N) = (1/2)e_{++}(N).$

The proof will be given elsewhere. The main tools used in the proof are Kneser's strong approximation theorem for the spin group [3], and a refinement of the factorization theorem for local integral isometries due to O'Meara and Pollak [7].

References

- E. Brieskorn: Die Milnorgitter der exzeptionellen unimodularen Singularitäten. Bonner Math. Schr., vol. 150 (1983).
- [2] A. H. Durfee: Bilinear and quadratic forms on torsion modules. Advances in Math., 25, 133-164 (1977).
- [3] M. Kneser: Klassenzahlen indefiniter quadratischer Formen in drei oder mehr Veränderlichen. Arch. Math. (Basel), 7, 323-332 (1956).
- [4] R. Miranda: Nondegenerate symmetric bilinear forms on finite abelian 2-groups. Trans. Amer. Math. Soc., 284, 535-542 (1984).

<i>s</i> (0)	w(1)	<i>s</i> (1)	w(2)	s(2)	w(3)	$\varepsilon, \eta \mod 4$	⊿ mod 8	e_2	f_2	type
>0								1	4	
	$w^{\mathfrak{s}}_{2,1} \oplus w^{\eta}_{2,1}$	>0	-			Auge survey and and the second s		1	4	
		0	rk > 0					1	4	
			0			$\varepsilon \equiv -\eta$		1	4	
						$\epsilon \equiv \eta \equiv 1$		2	2	(-, +)
						$\varepsilon \equiv \eta \equiv -1$		2	2	(-, -)
		>0						1	4	
		0	rk=2					1	4	
0	$w^{\varepsilon}_{2,1}$		$w_{2,2}^{\eta}$	>0				1	4	
				0	rk > 0		annan e seriende errore	1	4	
					0	$\varepsilon \equiv \eta$	1, 3	2	2	(-, +)
							5, 7	2	2	(-, -)
						$\varepsilon \equiv -\eta$	3, 5	2	2	(+, -)
							1, 7	2	4	
			0	>0		ε≡ 1		2	2	(-, +)
						ε≡ -1	5	2	2	(-, -)
				0	rk > 0	ε≡ 1		2	2	(-, +)
						ε≡ - 1	-	2	2	(-, -)
					0	-	1	4	2	(-, +)
							7	4	2	(-, -)
							3, 5	4	1	
	0	>0						2	2	(+, -)
		0	rk=2		-		-	4	1	
			$rk \leq 1$	>0	-			4	1	-
				0	-			8	1	

Table II

- [5] R. Miranda and D. R. Morrison: The number of embeddings of integral quadratic forms. I. Proc. Japan Acad., 61A, 317-320 (1985).
- [6] V. V. Nikulin: Integral symmetric bilinear forms and some of their applications. Izv. Akad. Nauk SSSR, 43, 111-177 (1979); Math. USSR Izvestija, 14, 103-167 (1980).
- [7] O. T. O'Meara and B. Pollak: Generation of local integral orthogonal groups. Math. Z., 87, 385-400 (1965).
- [8] C. T. C. Wall: Quadratic forms on finite groups, and related topics. Topology, 2, 281-298 (1963).