87. A Note on the Spaces of Self Homotopy Equivalences for Fibre Spaces

By Tsuneyo Yamanoshita

Department of Mathematics, Musashi Institute of Technology

(Communicated by Shokichi Iyanaga, M.J.A., Dec. 12, 1985)

1. Introduction. Throughout this note, we shall work within the category of compactly generated Hausdorff spaces which will be simply called spaces. Let X and Y be spaces with base points x_0 and y_0 respectively. We denote by $\text{map}(X, Y)$ and $\text{map}_0(X, Y)$ the space of maps of X to Y and the space of maps of (X, x_0) to (Y, y_0) respectively. Moreover, when k is a map of X to Y, we denote by $\text{map}(X, Y; k)$ the path component of k in $\text{map}(X, Y)$, and $\text{map}_0(X, Y; k)$ is defined similarly. A CW complex means a connected CW complex with non-degenerate base point. Let X be a CW complex with base point x_0, $G(X)$ the space of self homotopy equivalences of X and $G_0(X)$ the space of self homotopy equivalences of (X, x_0). In previous papers [5], [6], [7] we studied $G_0(X)$ when $X = E$ is a fibre space of a fibration $F \rightarrow E \rightarrow B$. This paper is also concerned with $G_0(X)$ for a fibre space X.

2. Main results. We quote the following two theorems [5, 6].

Theorem A. Let E and B be CW complexes and $p : E \rightarrow B$ a fibration with fibre F. Let $n \geq 1$ be a given integer. If F is $(n-1)$-connected and $\pi_i(B) = 0$ for every $i \geq n$, then we have the following fibration

$$G(E \mod F) \rightarrowtail G_0(E) \rightarrowtail G_0(B) \times G_0(F),$$

where $G(E \mod F)$ is the space of self fibre homotopy equivalences of E leaving the fibre F fixed.

Theorem B. Under the same hypothesis as above, the image of $p : G_0(E) \rightarrow G_0(B) \times G_0(F)$ is just the union of the path components in $G_0(B) \times G_0(F)$ each of which contains (g, h) satisfying

$$[\chi_\omega(h)] \circ [k] = [k] \circ [g],$$

where $\chi_\omega(h)$ is a self map of (B, b_0) and $k : (B, b_0) \rightarrow (B, b_0)$ is a classifying map in Allaud's sense for the fibration $F \rightarrow E \rightarrow B$.

Let $\varepsilon(X)$ denote the group $\pi_0(G_0(X))$ for a CW complex X and let R be a subgroup of $\varepsilon(B) \times \varepsilon(F)$ consisting of the elements $(g, [h])$ satisfying $[\chi_\omega(h)] \circ [k] = [k] \circ [g]$. Then our main result is the following

Theorem 1. Let E and B be CW complexes and $F \rightarrow E \rightarrow B = K(\pi, n)$ a fibration classified by a map $k : (B, b_0) \rightarrow (B, b_0)$ in Allaud's sense. Let $n \geq 1$ be a given integer. If F is n-connected and $\pi_j(F) = 0$ for every $j \geq 2n$, then we have the following fibration:
map_0(B, G(F)) \to G_0(E) \to R \times G_0(F),

where G_0 denotes the path component in $G_0(F)$ containing the identity map id_F, and we have the following exact homotopy sequence of the above fibration for every $j \geq 0$

$$1 \to \pi_j(map_0(B, G(F))) \to \pi_j(G_0(E)) \to \pi_j(R \times G_0(F)) \to 1.$$

By using the fact that $G(F)$ has the same weak homotopy type as $F \times G_0(F)$ we can easily see the following corollary, which is a generalization of Nomura's theorem (Theorem 3.2 in [3]).

Corollary. Under the same hypothesis as Theorem 1, we have the following exact sequence

$$1 \to [B, F]_0 \to \pi_0(E) \to R \to 1.$$

3. Sketch of proof. We shall denote by $X \simeq Y$ that X has the same weak homotopy type as Y. First we show the following

Lemma 2. It holds that

$$G(E \mod F) \simeq map_0(B, F) \simeq map_0(B, G(F)).$$

In fact, since we may regard F as a loop space from our hypothesis (see Corollary 9.9 in [4]), there exists an H-map $\sigma : F \to G(F)$ such that σ induces isomorphisms $\sigma_* : \pi_i(F) \to \pi_i(G(F))$ for every $i \leq n - 1$ by using Theorem 5.1 in [1]. Let B'_σ and B''_σ be an $(n-1)$-connective CW complex (B_σ, n) of B and an $(n-1)$-stage Postnikov complex of B_σ respectively. Then we have a fibration $B' \to B'' \pi \to B''_\sigma$. By using Theorem 7 in [5] we have the following

$$G(E \mod F) \simeq \Omega map_0(B, B_\sigma; k) \simeq \Omega map_0(B, B'_{\sigma}; k'),$$

where $B \sigma \simeq k$. Furthermore, noting that B'_σ has the same weak homotopy type as BF and B''_σ itself has the homotopy type of a loop space, we have

$$\Omega map_0(B, B'_\sigma; k') \simeq map_0(B, \Omega B'_\sigma) \simeq map_0(B, \Omega BF) \simeq map_0(B, G(F)).$$

Next we see easily the following

Proposition 3. Let X be a CW complex and Y a path connected H-space. Then there exists a cross-section $s : Y \to map(X, Y; l)$ for the following fibration:

$$map_0(X, Y; l) \to map(X, Y; l) \xrightarrow{\omega} Y,$$

where ω is the evaluation map at the base point x_0 of X.

We need the following

Lemma 4. B'_σ has the same weak homotopy type as $BG_0(F)$.

In fact, there exists the map $Bi' : BG_0(F) \to BG(F) = B_\sigma$ induced by the inclusion $i' : G_0(F) \to G(F)$ (see [2]). Then the map $\pi \circ Bi' : BG_0(F) \to B''_\sigma$ induces the isomorphisms of homotopy groups.

Proof of Theorem 1. We have the following commutative diagram
\[\Omega \text{map}_0 (B, B' ; k') \xrightarrow{\Omega (B j)_k} \Omega \text{map}_0 (B, B'' ; \pi \circ k) \xrightarrow{\Omega \pi} \Omega \text{map}_0 (B, B'' ; \pi \circ k) \]

Here it should be noticed that \(\Omega B'' \) has the same weak homotopy type as \(G_o(F) \) by Lemma 4.

Now, we regard the fibration on the left hand of the above diagram as the following fibration:

\[\text{map}_0 (B, F) \xrightarrow{\omega} \text{map} (B, F) \xrightarrow{j} G(F) \xrightarrow{\Omega \pi} \Omega B'' \]

Thus, by Proposition 3 we see that

\[(\Omega \omega)_* : \pi_*(\text{map}_0 (B, F ; l)) \rightarrow \pi_*(\text{map} (B, F ; l)) \]

is a monomorphism for every \(r \). On the other hand, we can easily see that the homomorphism

\[(\Omega (B j)_k)_* : \pi_*(\Omega \text{map} (B, B' ; k')) \rightarrow \pi_*(\Omega \text{map} (B, B'' ; k)) \]

is a monomorphism for every \(r \). In other words, the homomorphism of \(\pi_*(\mathcal{G}(E \mod F)) \) into \(\pi_*(\mathcal{G}(E)) \) induced by the inclusion is a monomorphism for every \(r \). This implies that the following homotopy sequence of the fibration \(\rho \) is exact for every \(r \geq 0 \)

\[1 \rightarrow \pi_*(\mathcal{G}(E \mod F)) \rightarrow \pi_*(G_o(E)) \rightarrow \pi_*(R \times G_o(F)) \rightarrow 1. \]

Correction of the previous paper [5]. On p. 16, line 18, “a map of \(B \) to \(B'' \)” should be replaced by “a map of CW complex \(B \) to CW complex \(B'' \).

References