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A Nonsymmetric Partial Difference Functional Equation
Analogous to the Wave Equation
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(Communicated by KSsaku YOSIDA, M. J. A., NOV. 12, 1985)

1o Introduction. The purpose of this note is to announce the
general solution of the nonsymmetric partial difference functional equation

(N) f(x q- t, y) q- f(x- t, y) 2f(x, y) f(x, y q- s) q- f(x, y-- s)-- 2f(x, y)
2 82

analogous to the well-known wave equation

3x 3Y
f(x, y)-O

with the aid of generalized polynomials when no regularity assumptions
are imposed on f.

Let R be the set of all real numbers, and let f be a function on the
plane RR taking values in R. Define the divided symmetric partial
difference operators/ and/ by

xt y,t

(/ f)(x, y)--[f(x-t/2, y)--f(x--t/2, y)]/t

(/ f)(x, y) If(x, y+ / 2)-- f(x, y-- t / 2)] / t
yt

or all x, y e R and or all t e R\(0).
The symmetric partial difference unctional equation

((-- )f)(x, y)=0
,t yt

analogous to the wave equation or, in expanded orm,
f(xWt, y)+f(x-t, y)=f(x, yWt)+f(x, y-t)

or all x, y, t e R has been studied by J. Aczl, H. Haruki, M. A. McKiernan
and G. N. Sakovi5 [1], J. A. Baker [2], D. P. Flemming [3], D. Girod [4],
H. Haruki [5], M. Kucharzewski [7], M. A. McKiernan [10], and others.

In this note we will consider the nonsymmetric partial difference
functional equation

((-)f)(x, y)=0

which is equivalent to the above expanded orm (N) for all x, y e R and for
all s, t e Rk(0) and set. Equation (N) is stated in [3] without finding a

solution.
2. The general solution of (N). The result is as follows.

Theorem 1. A function f" R XRR satisfies functio.nal equation (N)

for all x, y e R, s, t e Rk(0}, and set if and only if there exist
( i ) additive functions A, B’RR,
(ii) a function C’RxRR which is additive in both variables, and
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(iii) polynomials
P(x) a+ax/2+ax/6
P.(y) a -t- ay /2+ ay /6
P(x, y)--axy/2+ayx/2+axy/6+ayxS/6,

where a, a, a, a, a, and a are constants, such that
f(x, y)--A(x)+B(y)+C(x, y)--P(x)+P(y)+P(x, y)

for all x, y e R.
If some suitable regularity assumptions are imposed on f, then by

applying well-known results of an additive unction, Theorem 1 implies
that f of (N) is given by a certain ordinary polynomial of bounded degree.

The general solution of (N) is obtained by algebraic manupulations.
3. A process o the proof. In order to solve equation (N) we, first

consider the difference unctional equation
(’)(x) =(x)

where , :R--.R and the symmetric divided difference operator 7 is
defined by

(/7)(x) [(x+y/ 2) (x y/ 2)] / y.
The above equation is equivalent to
(P) [(x+ y)+(x y) 2(x)] / y2-= (x)
or all e R and y e R\{0}. It is clear that if __=0, then @ also satisfies
the difference functional equation

()(x)=0
or all x, y e R. Here / :=E-I is the ordinary forward difference
operator,

(E)(x) (x+y), ( )(x) ((()))(x)
for a given integer n_l, and I is the identity operator. Notice that the
ring of operators generated by this family of operators is commutative
and distributive. It was shown by S. Mazur and W. Orlicz [8] and M. A.
McKiernan [9], among others, that the general solution of the finite dif-
ference unctional equation
(D) (z//)(x) =0
for all x, y e R can be expressed in terms o symmetric multi-additive
unctions. Specifically, let A denote a symmetric function on R-R,
additive in each variable. Let A be the diagonalization of A, that is,
A is a map from R to R defined by

A(x)--A(x. ., x),
Then the general solution of (D) is given by a generalized polynomial of
degree at most n such that

4x(x)-- A(x)+Al(x)+A2(x) +... +An(X)
for all x e R, where A(x)=A is taken to be a constant.

The proof of Theorem 1 is based on the following theorem"
Theorem 2. Two functions , R--R satisfy equation (P) for all

x e R and y e R\{0} if and only if there exists an additive function A’ R--+R
such that
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(x) A+A’(x)+Bx/(2 !)+Cx/(3 !)
(x)=B+Cx

where A, B and C are constants.
To prove Theorem 2 we need the following two lemmas. One of them

is"
Lemma 1. If two unknown functions 4x, R--R satisfy equation (P)

for all x e R and y e R\{0}, then also satisfies the equation
()(x)=O

for all x, y e R.
The other is."
Lemma 2. Retain all assumptions of Lemma 1. Then qx also satisfies

the equation
()(x)=o

for .all x, y e R.
In addition, some regularity assumptions are imposed only on in

the above Theorem 2, then it can be readily shown that and are ordi-
nary polynomials of bounded degree. For example, it is known in [6]
that if satisfies equation (D)for all x, y e R and is bounded on a set of
positive Lebesgue measure, then e C and the only solution of (D) is
given by an ordinary polynomial of degree at most n. Hence, we have the
following result Let be bounded on a set of positive Lebesgue measure.
Then 4x, e C and the only solutions of (P) are given by

4x(x) Co+ cx+ c.x/ (2 !)+ cx/ (3 !)
(x) d,(x) / dx-- c-t- cx

where {c} are constants. These are also the only continuous solutions of
(P).
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