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1. Introduction. Related to the plasma confinement problem,
the fo.llowing seco,nd order differential equation is of some interest"
(1.1) p(/t)=grad {’P(div)+(grad P).}

+(1/z){B rot (rot (B $))--(rot B)rot (B )}
=__ --p/Kp/.

Here, (t,r) is related to the velocity field V(t,r) as d$/dt=V(t,$+r),
(0, r)=0, and is called the Lagrangian displacement vector. The
quantities p, P and B are independent o t and are the solutions of
the plasma equilibrium satisfying"
(1.2) grad P ] B, ] (1//) rot B, div B 0,
with P, p>=00. Further, (1.1) is derived rom the following mag-
netohydrodynamic (MHD in short) system"

P __[(pp_) DDtV grad P+ ] B-5-+div (pV)=0, =0, p

(1.3) 3B 1----rotE, divB=-0, E+VB=0, ]=rotB,

by means o.f the linearization in the vicinity of the equilibrium (1.2).
Here, p,P, V and ] are respectively the density, the pressure, the
velocity and the electric current density o the plasma, and B and E
are the magnetic and electric fields, and / is the permeability and Y
is the specific heat ratio, and D/Dt=3/3t/V.grad is the convective
derivative.

In the ollowing, we shall investigate the spectral properties of
K. Especially, we consider (1.1) in the axisymmetric toroidal region
9 in R and around the ollowing special axisymmetric equilibrium
(cf. Temam [5], Friedman [2] 14-18). Namely,/2 is defined as

D {r= (x, y, z) a (r, 8, z) .a, x r cos 9, y r sin 9},
where p=p(r, z) with r-(x/y)/" satisfies the non-linear elliptic dig-

erential equation (Grad-Shafranov equation)"

( 1 )r - r2{OP/O}/I{OI/O}
3r r 3r -with given functions P and I of . In this case, B is given as

(1B= -- r --r Or
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We shall assume that we can take the orthogonal coordinates (, Z, 3)
with Z=Z(r, z), 0_<_Z2u, satisfying" grad .grad Z=0.

Then, or the displacements =enO(, ), the operator K in (1.1)
is represented in the. form"

(1 4) K (A B)B* C
where
,(.5)

with 3=6/, 3=/3Z (c. Goedbloed [3]). Here, ,,, and 0 are
real unctions, and 7 and 7o are 22 real symmetric matrix valued
unctions, and is a unction, and ,, ,, and 0 are lz2 matrix
valued unctions, and 7 is a 22 matrix valued unction, and they
are all bounded and smooth and 2z-periodic in Z-variable together
ith their all derivatives. Further, we denote by * the adjoint of a

matrix.
The operators A, B, B* and C will be realized in C(), C(, ),

C(,) and C() respectively, where (.) denotes a class of
closed operators in respective spaces and =L(*) with a flat product
manifold *" *={(,X)la,<+<a, 0X<2z, (+, 0) is identified with

(+, 2z)}=(a, a)S, where S =R/2Z. Further, A is strongly elliptic
in + and X variables with Dirichlet boundary condition, and C is elliptic
in Z variable uniformly with respect to a parameter + (a<<ag, and
the inequality"

(1.6) {r--(1/a,)flfl,}(+,Z)co>O, (+,Z) e 9"
is satisfied.

2. Seladjoint realization o K. We shall consider the case that
the plasma is confined in the fixed conducting shell. We denote by
H(*) the Sobolev space of order m in 9", and by H(*) a subset o
the unctions in H(9*) with zero trace at the boundary o 9" up to
the (m-1)-th order derivatives. Let

(Ko) (Ho(9*) H(9*)){H(*)H(9*)},
.and let

Then, K is symmetric in ={} andwith domain _(Ko).
we have

Theorem 1. Under the conditions in 1, the above K has a

selfad]oint extension K in ( which has a resolvent for a sufficiently
large with the form"
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(2.1) R=(K+2)-[(A+ 2)-1+ [(A + 2)-IB]D;1B*(A + 2) -1 --[(A + 2)-IB]D;I
DIB*(A-F)

with D=[--B*(A+2)-B+C+]. Here, [.] denotes a closed extension
o.f an operator.

We can prove this theorem by introducing the symmetric closed
orm which corresponds to D and has the orm domain =_q)(D/)
={L([a, a])(R)H(S)} which includes the domain (D) of D. Here,
H(S) denotes the Sobolev space of order 1 in S.

3 Essential spectrum of K. The essential spectrum o K was.
first investigated extensively by J. P. Goedbloed [3] and later by J.
Descloux and G. Geymonat [1] in mathematically rigorous ashion.
We shall show here another proof which will be simpler than that of
[1] in some sense, and it may have some advantage or urther inves-
tigations o the spectrum of K such as the absolute continuity (cf.
Kako [4]).

The main idea of the proof is that the essential spectrum is in--
variant under the perturbations by compact operators (denoted by C).
Namely, the reso.lvent R of K is represented as

(3.1) R=(0 0 )+R0 D’-
where

(3.2)

011
(freezing operator)

and D D: has the essential spectrum X with 2:() a,
a, 2() is the ]-th eigenvalue o. D:() acting on the variable
with a fixed }. Now, the main theorem is stated as ollows.

Theorem 2. The essential spectrum of K coincides with defined
above.

4. Outline of the proof of Theorem 2. The proo o the theo-
rem is derived rom the next lemma.

Lemma . The operator D; is represented as
(4.1) D;--D---D;1QaD- Q--D--D,
with D;QD- e C().

Proof. Ater some calculations, we have
(4.2) Q=D--D
with some second order elliptic operator A in and Z and the lower
order term Q? which is compact in. Then, we have

-1(4.3) D QD =[D;(-3)}[(A+
((-+2)l/ai(fl3)D-}+ compact operator,.
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and the first and the third actors of the first term are bounded since
(D)c_(D/2)={L2([al, a.])(R)HI(S1)} and the second actor

(A1+)-1(_.#+
is compact. Hence -1D QD-1 becomes compact. Q.E.D.
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