96. On Differential Operators and Congruences for Siegel Modular Forms of Degree Two

By Takakazu Satoh

Department of Mathematics, Tokyo Institute of Technology (Communicated by Kunihiko Kodaira, M. J. A., Nov. 12, 1984)

- § 1. Introduction. We study congruences between Siegel modular forms of degree two and different weight by using differential operators. In the degree one case, such congruences were studied by Serre [6] and Swinnerton-Dyer [8]. For the degree two case, we refer to Kurokawa [2]. We denote by $M_k(\Gamma_n)$ (resp. $M_k^{\infty}(\Gamma_n)$, $S_k(\Gamma_n)$) the C-vector space of holomorphic Siegel modular forms (resp. C^{∞} -modular forms, holomorphic cusp forms) of degree n and weight k. For a subring R of C, we denote by $M_k(\Gamma_n)_R$ the R-submodule of $M_k(\Gamma_n)$ consisting of Siegel modular forms which have Fourier coefficients in R. This paper is an abstract of [5].
- § 2. General results. We introduce certain differential operators. For a variable $Z = \begin{pmatrix} z_1 & z_3 \\ z_3 & z_2 \end{pmatrix}$ on H_2 of Siegel upper half plane of degree two, we put

$$Y = rac{1}{2i} \left(Z - ar{Z}
ight) = inom{y_1 \ y_3}{y_3 \ y_2}, \qquad rac{d}{dZ} = inom{rac{\partial}{\partial z_1} \quad rac{1}{2} \cdot rac{\partial}{\partial z_3}}{rac{1}{2} \cdot rac{\partial}{\partial z_3}}$$

and $dY = dy_1 dy_2 dy_3$. For integers k and $r \ge 0$, we define a differential operator δ_k acting on a C^{∞} -function f on H_2 by

$$\delta_k f = |Y|^{-k + (1/2)} \left| \frac{d}{dZ} \right| (|Y|^{k - (1/2)} f)$$

and put $\delta_k^r = \delta_{k+2r-2} \cdots \delta_{k+2} \delta_k$. We understand that δ_k^0 is the identity operator. These differential operators were studied by Maass [4]. By Harris [1, 1.5.3], δ_k^r maps $M_k^{\infty}(\Gamma_2)$ to $M_{k+2r}^{\infty}(\Gamma_2)$.

Next, we make a survey of a holomorphic projection. We set $V = \{Y \in M(2, \mathbb{R}) | Y > 0\}$. For $f \in M_w^{\infty}(\Gamma_2)$, let $f(Z) = \sum_T a(T, Y, f)q^T$ be its Fourier expansion, where $q^T = \exp(2\pi i \operatorname{Tr}(TZ))$ and T runs over all half-integral matrices of size two. We put

$$P_w(f) = \sum_{T>0} P(w, T, a(T, Y, f)) q^T,$$

where

$$P(w, T, a(T, Y, f)) = \frac{\int_{V} a(T, Y, f) e^{-4\pi \operatorname{Tr} (TY)} |Y|^{w-3} dY}{\int_{V} e^{-4\pi \operatorname{Tr} (TY)} |Y|^{w-3} dY}$$

and T runs over all half-integral positive definite matrices. Then, $P_w(f)$ belongs to the ring of formal power series $C[q_3, q_3^{-1}][[q_1, q_2]]$ where $q_j = \exp{(2\pi i z_j)}$. It is known that if f is of bounded growth in the sense of Sturm [7, § 2(6)], then $P_w(f)$ converges for all $Z \in H_2$ and it is a holomorphic cusp form of weight w. (See Sturm [7, Theorem 1].) For complex numbers α and β , we put

$$\varepsilon(\alpha,\beta) = \begin{cases} \alpha(\alpha-1)\cdots(\beta+1)\beta & \text{if } \alpha-\beta \text{ is a non-negative integer,} \\ 1 & \text{otherwise,} \end{cases}$$

and

$$\eta(\alpha,\beta) = \begin{cases} \alpha \Big(\alpha - \frac{1}{2}\Big) \cdots \Big(\beta + \frac{1}{2}\Big)\beta & \text{if } 2(\alpha - \beta) \text{ is a non-negative integer,} \\ 1 & \text{otherwise.} \end{cases}$$

Theorem 1. Let R be a subring (not necessarily containing 1) of C satisfying $(1/2)R \subset R$. Let $f \in M_{k_1}(\Gamma_2)_R$ and $g \in M_{k_2}(\Gamma_2)_R$ with $k_1 + k_2 > 4$. Suppose that I is an ideal of R satisfying

- (1) $(1/2)I\subset I$,
- (2) $a(T, g) \in I \text{ for all } T \neq 0.$

Let r_1 be a non-negative integer and r_2 be a positive integer. We put $r=r_1+r_2$ and $w=k_1+k_2+2r$. Then for any positive integer m,

$$(2\pi i)^{-2r}\xi a(mE, P_w(\delta_{k_1}^{r_1}f\cdot\delta_{k_2}^{r_2}g)) - \nu m^{2r}a(mE, fg)$$

belongs to (2w-2r-3)I, where $\xi = \varepsilon(w-3, w-r-2)\varepsilon(w-(5/2), w-r-(3/2))$ and $\nu = \eta(k_1+r_1-1, k_1-(1/2))\eta(k_2+r_2-1, k_2-(1/2))$.

Theorem 2. Let $f \in M_k(\Gamma_2)$ and $g \in M_l(\Gamma_2)$ with w > 4 where k+l = w. Let r and s be non-negative integers. Then we have the following:

- (1) $\delta_k^r f \cdot \delta_l^s g$ is of bounded growth for $r+s \geq 3$. Especially, $P_{w+2r}(g\delta_k^r f)$ belongs to $S_{w+2r}(\Gamma_2)$ for $r \geq 3$.
- (2) If at least one of f and g is a cusp form, then $\delta_k^r f \cdot \delta_i^s g$ is of bounded growth for all $r, s \ge 0$.
- (3) $P_{w+2}(g\partial_k f + f\partial_l g)$ belongs to $S_{w+2}(\Gamma_2)$ where $\partial_k^r = \varepsilon(k+r-(3/2), k-(1/2))^{-1}\delta_k^r$. Especially, $P_{2k+2}(f\delta_k f)$ belongs to $S_{2k+2}(\Gamma_2)$.
 - (4) $P_{w+4}(g\partial_k^2 f + 2\partial_k f \cdot \partial_t g + f\partial_t^2 g)$ belongs to $S_{w+4}(\Gamma_2)$.

For each integer $m \ge 1$, $T(m): M_k(\Gamma_n) \to M_k(\Gamma_n)$ denotes the m-th Hecke operator. If $n \le 2$ and f is a non-zero eigen function of all Hecke operators T(m), we call f an eigen form and denote the eigenvalue of T(m) by $\lambda(m, f)$.

Theorem 3. Let K be an algebraic number field, O_K be its ring of integers, $\mathfrak p$ be its prime ideal not dividing the ideal (2), and R be the localization of O_K at $\mathfrak p$. Let $f \in M_{w-2r}(\Gamma_2)_R$ and $g \in S_w(\Gamma_2)_R$ be eigen forms with 4 < w - 2r < w. Suppose that all the following conditions (1)–(6) are satisfied:

(1) There exist positive integers m_1, \dots, m_n such that

$$N_{L/K}|(\lambda(m_i, f_i))_{1 \leq i, j \leq n}| \not\equiv 0 \mod \mathfrak{p}$$

where $n = \dim S_w(\Gamma_2)$ and $\{f_1, \dots, f_n\}$ is an eigen basis of $S_w(\Gamma_2)$ and L is the composite field of K and $Q(\lambda(m, f_j) | m \ge 1)$ for $j = 1, \dots, n$.

(2) There exist a positive integer e and 2s ($s \ge 1$) modular forms $h_{1,t} \in M_{k_{1,t}}(\Gamma_2)_R$, $h_{2,t} \in M_{k_{2,t}}(\Gamma_2)_R$ with $k_{1,t} + k_{2,t} = w - 2r$, $r_{1,t} \ge 0$, $r_{2,t} \ge 1$ and $r_{1,t} + r_{2,t} = r$ for $t = 1, \dots, s$ such that

$$a(mE, f) \equiv a\Big(mE, \sum_{t=1}^{s} \nu_t h_{1,t} h_{2,t}\Big) \mod \mathfrak{p}^e$$

for all $m \ge 1$, where

$$\nu_{t} = \eta \left(k_{1,t} + r_{1,t} - 1, k_{1,t} - \frac{1}{2}\right) \eta \left(k_{2,t} + r_{2,t} - 1, k_{2,t} - \frac{1}{2}\right).$$

- (3) \mathfrak{p}^e divides (2w-2r-3)I where I is the ideal of R generated by $a(T, h_{2,t})$ for $T \geq 0$, $T \neq 0$ and $t = 1, \dots, s$.
 - (4) $a(E, f) \equiv a(E, g) \mod \mathfrak{p}^e$ and $a(E, f) \not\equiv 0 \mod \mathfrak{p}$
 - (5) $m_i^{2r} \lambda(m_i, f) \equiv \lambda(m_i, g) \mod \mathfrak{p}^e \text{ for } i=1, \dots, n.$
 - (6) $\sum_{t=1}^{s} P_w(\delta_{k_1,t}^{r_1,t} h_{1,t} \cdot \delta_{k_2,t}^{r_2,t} h_{2,t})$ belongs to $S_w(\Gamma_2)$.

Then we have:

$$m^{2r}\lambda(m, f) \equiv \lambda(m, g) \mod \mathfrak{p}^e$$
 for all $m \ge 1$.

§ 3. Examples. We prove some congruences between Siegel modular forms of degree two and different weight by using Theorem 3. Let Φ be the Siegel Φ -operator. For an eigen form $f \in M_k(\Gamma_1)$, there is a unique eigen form $[f] \in M_k(\Gamma_2)$ such that $\Phi[f] = f$. Let σ_k be Saito-Kurokawa lifting $M_{2k-2}(\Gamma_1) \to M_k(\Gamma_2)$. Let $S_k^{II}(\Gamma_2)$ be the orthogonal complement of $\sigma_k(S_{2k-2}(\Gamma_1))$ in $S_k(\Gamma_2)$ with respect to the Petersson inner product. We may call an element of $S_k^{II}(\Gamma_2)$ a generic form since it does not lie in the image of Eisenstein lifting and Saito-Kurokawa lifting. We use the usual notation for modular forms such as Δ_k , χ_k and φ_k . The modular form $\chi_{20}^{(3)} \in S_{20}^{II}(\Gamma_2)$ defined by $4\chi_{10}\varphi_4\varphi_6-12\chi_{12}\varphi_4^2+28569600\chi_{10}^2$ has the minimal weight 20 among generic forms. (See Kurokawa [3, §5].) By using Theorem 3, we have the following congruences.

Theorem 4. The following congruences hold for all $m \ge 1$:

$$\lambda(m, \chi_{20}^{(3)}) \equiv m^2 \lambda(m, [\Delta_{18}]) \mod 7,$$
 $\lambda(m, \chi_{10}) \equiv m^2 \lambda(m, \varphi_8) \mod 5,$
 $\lambda(m, \chi_{12}) \equiv m^4 \lambda(m, \varphi_8) \mod 17,$
 $\lambda(m, \chi_{14}) \equiv m^6 \lambda(m, \varphi_8) \mod 19.$
 $(*)$

Remark. In the proof of (*), we use Theorem 3 with slight modification.

References

[1] M. Harris: Special values of zeta functions attached to Siegel modular forms. Ann. Sci. École Norm. Sup., 14, 77-120 (1981).

- [2] N. Kurokawa: Congruences between Siegel modular forms of degree two. Proc. Japan Acad., 55A, 417-422 (1979); II. ibid., 57A, 140-145 (1981).
- [3] —: Examples of eigenvalues of Hecke operators on Siegel cusp forms of degree two. Invent. Math., 49, 149-165 (1978).
- [4] H. Maass: Die Differentialgleichungen in der Theorie der Siegelschen Modulfunktionen. Math. Ann., 126, 44-68 (1953).
- [5] T. Satoh: Differential operators and congruences for Siegel modular forms of degree two (1984) (preprint).
- [6] J.-P. Serre: Congruences et forms modulaires. Séminaire Bourbaki, Exp. 416 (June 1972); Lect. Notes in Math., vol. 317, Springer, pp. 319-339 (1973).
- [7] J. Sturm: The critical values of zeta functions associated to the symplectic group. Duke Math. J., 48, 327-350 (1981).
- [8] H. P. F. Swinnerton-Dyer: On l-adic representations and congruences for coefficients of modular forms. Lect. Notes in Math., vol. 350, Springer, pp. 1-55 (1973).