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§1. Introduction. We study congruences between Siegel modu-
lar forms of degree two and different weight by using differential
operators. In the degree one case, such congruences were studied by
Serre [6] and Swinnerton-Dyer [8]. For the degree two case, we refer
to Kurokawa [2]. We denote by M, (I",) (resp. M3(I",), S,(I",)) the C-
vector space of holomorphic Siegel modular forms (resp. C*-modular
forms, holomorphic cusp forms) of degree n and weight k. For a
subring R of C, we denote by M,.(I",) the R-submodule of M ,(I",) con-
sisting of Siegel modular forms which have Fourier coefficients in R.
This paper is an abstract of [5].

§2. General results. We introduce certain differential opera-

tors. For a variable Z —_—(gl zs) on H, of Siegel upper half plane of

3 “2
degree two, we put

o 1 9

Y= 1. Z— Z)____(% ys), (£= 02, 2 9z,
2 Ys Yo d —1— ) Mg ) (?%
2 0z, 0z

and dY =dy,dy,dy,. For integers k and »=0, we define a differential
operator 4, acting on a C*-function f on H, by

0 f= Y| *+0m ’Cg‘Z"(lYlk—(l/Z)f)

and put 0,=104.,s-» - -0x+0:- We understand that 4% is the identity
operator. These differential operators were studied by Maass [4]. By
Harris [1, 1.5.31, 6; maps M3(I",) to Mg, (I",).

Next, we make a survey of a holomorphic projection. We set
V={YeM@, R)|Y>0}. For feM; ('), let fF(Z)=>,, (T, Y, f)q" be
its Fourier expansion, where q”"=exp (2ri Tr (T'Z)) and T runs over all
half-integral matrices of size two. We put

Pw(f)=TZ>:0P(w’ T, a(T7 Y’ f))qT,

where

Pw, T, (T, Y, 1)) IV“(T’Y’f)e_“wY)lYlHdY
w, L, all, ¥, = -

j g4 Tr (TY) [YIw—de
14
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and T runs over all half-integral positive definite matrices. Then,
P,(f) belongs to the ring of formal power series Clq,, q¢:'1{lq,, ¢,1]
where q;=exp (2riz;). It is known that if f is of bounded growth in
the sense of Sturm [7, § 2(6)], then P,(f) converges for all Z ¢ H, and
it is a holomorphic cusp form of weight w. (See Sturm [7, Theorem
1].) For complex numbers « and B, we put

ela, )= {0{(0{—1). --(B+1)B if a—pBis a non-negative integer,

1 otherwise,
and
1 ) ( 1 ) . . ..
ala—=).---{f+= if 2(e—pB) is a non-negative integer,
e 13)={ (==) (e +3)s g
1 otherwise.

Theorem 1. Let R be a subring (not necessarily containing 1) of
C satisfying 1/2) RCR. Let feM, ('), ond g M, "), with k,+k,
>4. Suppose that I is an ideal of R satisfying

1 Q/2)I1cl,

@) a(T,9)el for all T+0.

Let r, be a non-negative integer and r, be a positive integer. We put

r=r4+7r, ond w=k +k,+2r. Then for any positive integer m,
(2ri)-*"éa(mE, P, 051 f -0529))—vm* a(mE, fg)

belongs to Qw—2r—3)I, where é=e(w—3, w—r—2)e(w—(56/2), w—r

—(3/2)) and y=y(k,+r,—1, k,—Q /2Ny, +7r,—1, k,—(1/2)).

Theorem 2. Let fe M/, and g € M,[I",) with w>4 where k+1
=w. Letrand s be non-negative integers. Then we have the fol-
lowing :

@) oyf-08g is of bounded growth for r-+s=3. FEspecially,
P, ...(90%f) belongs to S, ., (") for r=3.

@) If at least one of f and g is a cusp form, then 8,f -89 is of
bounded growth for all r, s=0.

(@) P,.(90.f+f3,9) belongs to S,..,(I")) where d;=e(k+r—(3/2),
k—@1/2))-'6;. Especially, P, . (f6,f) belongs to S, ..(I"5).

4) P,.(90%f+20,f-0,9+ fd1g) belongs to S,.(I").

For each integer m>1, T(m): M,(I",)—M (",) denotes the m-th
Hecke operator. If n<2 and f is a non-zero eigen function of all
Hecke operators T'(m), we call f an eigen form and denote the eigen-
value of T(m) by A(m, f).

Theorem 3. Let K be an algebraic number field, Oy be its ring
of integers, p be its prime ideal not dividing the ideal (2), and R be
the localization of Ox at p. Let feM,_,,(I',), and g € S,(I',)r be eigen
forms with 4<<w—2r<w. Suppose that all the following conditions
(1)-(6) are satisfied :

(1) There exist positive integers m,, - - -, m, such that
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Nyl QMg f)isi,i2a]%E0 mod p
where n=dim S,(I"y) and {f, - - -, f.} ts an eigen basis of S,([",) and L
is the composite field of K and QA(m, f;)|m=1) for j=1, -- -, n.
(2) There exist a positive tnteger e and 28 (s=1) modular forms
hi,. e Mkl,;(FZ)Rr h,,. € Mk“(l"z)R with k., +k, =w—-2r, r,, =0, r,, =1
and v, ,+7v, ,=r for t=1, - - -, s such that

a(mkE, )= a(mE, fs_] uth,,thz,,> mod p°
t=1

for all m=1, where
Vt=77<k1,t + 7‘1,&“‘1, kl,t_ %)ﬂ(kz,t + /'ﬂz,t_la kz,z“ '%‘)

B) pe divides 2w —2r—3)I where I is the ideal of R generated by
a(T, h,,,) for T=0, T+0 and t=1, ---, s.

@) ol H=a(FE, g) mod p° and a(E, f)£0 mod p

B) mIim,, H=ilm,, g) mod p° for i=1, -- -, n.

6) i1 P,(3pthy,, - 052thy,,) belongs to S, (I7).

Then we have:
m¥A(m, f)=i(m, g) mod p¢ for all m=1.

§3. Examples. We prove some congruences between Siegel
modular forms of degree two and different weight by using Theorem
3. Let @ be the Siegel ®@-operator. For an eigen form fe M, "),
there is a unique eigen form [f]e M,.(I",) such that @[f]=f. Let o,
be Saito-Kurokawa lifting M,,_.(I")—M,I",). Let S¥(I’, be the
orthogonal complement of ¢,(S,;,_.(I")) in S,(I";) with respect to the
Petersson inner product. We may call an element of SI/(I",) a generic
form since it does not lie in the image of Eisenstein lifting and Saito-
Kurokawa lifting. We use the usual notation for modular forms such
as 4, X; and ¢,. The modular form X € S{/(I",) defined by 4X,.p,0;—
122,05+ 2856960023, has the minimal weight 20 among generic forms.
(See Kurokawa [3, §5].) By using Theorem 3, we have the following
congruences.

Theorem 4. The following congruences hold for all m=1:

Am, 1)=m*A(m, [4,]) mod 7,

A(m, X)) =m*A(m, ¢,) mod 5, (x)
A(m, L) =m*Alm, ¢;) mod 17,
Am, X, ) =mbaA(m, ¢,) mod 19.

Remark. In the proof of (x), we use Theorem 3 with slight
modification.
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