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1. The notations E,, E%, O for an algebraic number field F', D,
for a polynomial A(x) € Z[x] and Dy («) for an algebraic number « in
F have the same meanings as in [3].

In this note, we shall consider totally real cubic fields K with the
properties :

(I) 6, 6+1ecE,

A) Ox=Z+2Z6+Z6".

These fields will be called for convenience primitive with two consecu-
tive units, in short P-C fields. We shall prove

Theorem. In P-C fields, we have E,={4+1) X4, 6+1).

2. Now we can distinguish four cases:

(1) 0, —1—0ecE% (2) 0, 14+6e E}

(8) —6, —1—0e¢E: (4) —0, 1+0eE:

In the case (1), we have Ny, 0=1, Ng,(1+6)=—1 which implies
Irr (6; Q=o' —ma*—(m+3)x—1, me Z, and in the case (2), we have
Nyo0=1, Ng,o(1+6)=1 which implies Irr (§; @) =2*—na*—(n+1x—1,
neZ. The cases (8), (4) can be reduced to the case (2) by replacing ¢
respectively by —1—60 and —(1+6)-'. Accordingly, we have to con-
sider two kinds of fields (P-C1) and (P-C2), which are P-C fields with
properties (1) respectively (2).

Now we have

Theorem 1. Cubic field K=Q(6) with Irr (6; @ =f(x) e Z[x] s
(P-C1) field, if and only if f(x)=z*—max*—(m+3)x—1, meZ and
v D, =m*4+3m+9 is square free.

In fact, (1) is equivalent with Irr (; Q) = f(¥)=ua’—ma’—(m+3)x
—1 and in this case K is Galois and so totally real, and (II) holds if
and only if /D, is square free.

Theorem 2. Cubic field K=Q(6) with Irr (§; Q) =g(x) € Z[x] is
(P-C2) field, if and only if g@)=x*—nx*—~(m+1x—1, neZ, D,
=m*+n—38)*—382>0 is square free.

In fact, (2) is equivalent with Irr (0; Q) =a*—na*—(n+1)x—1 and
D, >0 means that K is totally real, and (II) means that D, is square
free.

3. Proof of Theorem. We shall prove this theorem in two cases:
(P-C1) fields and (P-C2) fields.
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(i) Case (P-C1). In [3], we have proved Ey={+1) X6, 6+1)
for (P-C1) fields with m>=—1. The case m<—1 is reduced to this
case for the following reason. Put J(m, x)=2*—mx*—(m+3)x—1 and
m—+3=—1. Then we have —(1/z*)J(m, x)=J(, 1/x) and if m=—1,
then we have [< —2. Thus if Irr (0; Q) =J(m, x) with m=—1, then
Irr (1/6, Q)=J(, x) with m<—1.

(ii) Case (P-C2). In [4], we have proved E,={+1) x4, 6+1)
for (P-C2) fields with < —7. So we have to supplement the case
n=—5, —6. The case n=>4is reduced to this case (see Remark 1 in [4]).
Let S be the set of conjugate mappings of K/Q. TUsing the fact
|2"—1|=max (|2, 1)"~?||z—1]| for any ze C and ne N with n=2 (cf.
[1]), we have |§(6+1)—1|=|2—1I=max (1], 1)]|2f—1] in the notations
of [4]. As K/Q is totally real, we have |[2°[*=(|2]")* for any € S, so
that we have
(%) n2—|-5n+5=a[e'{sl (5(5+1)—1)”[=61;1Smax qap, 1)”];[SH2” F—1|

> (42|14 3)"| Nyl 2=,
as the roots of g(x) are situated as follows:
n+1<5,<n+2, —2<§<-1 and 0<§,<1.

A straightforward computation shows (see the proof of Theorem in
[6] and consider the discriminants of Irr (|2]; @), Irr (1|—1; @) and
Irr (2|4+1; Q)), that we have |N,,(A—1)|=5. Thus (x) is impossible
for n=—5, —6. Hence the case (k, )=, 1) can not take place.

Remark. Our theorem follows also from the following result cf
E. Thomas [2] (instead of [3], [4]): K=Q() with Irr (§; Q)=x’—ma*
—(m+3)x—1 with m=—1 or Irr(§; Q) =2*—m—1)x*+nx—1 with
n=T7 has the property that {(£1)x <6, 6+1) respectively (£1)
% {6, 6—1> coincide with the unit groups of orders Z+Z6-+Z¢*. The
proof is quite different from ours.
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