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There are vast references on local hypoellipticity of degenerate
elliptic-parabolic operators (cf. Amano [1]1, [2], Fedii [8], Hormander
[5], Morimoto [8], Oleinik and Radkevich [9] and their references),
however one can find only few papers concerned with global hypoel-
lipticity. Oleinik and Radkevich [9] and Kusuoka and Stroock [7] gave
several criteria of global hypoellipticity. Fujiwara and Omori [4]
found an operator which is globally hypoelliptic but not locally hypo-
elliptic. In this note, we give a criterion of global hypoellipticity
which is finer than Oleinik and Radkevich’s result, and show a theo-
rem as one of its applications. Fujiwara and Omori’s result is
contained in our theorem as a special case. Oleinik and Radkevich’s
and Kusuoka and Stroock’s theorems are not applicable to the opera-
tors treated in our theorem. We can apply our criterion to the wider
class of degenerate elliptic-parabolic operators.

Let P be a differential operator of the form

P=0?+a(x)o?
with nonnegative coefficient a(x) in C=(T?), where 9,=0/dx; (i=1,2)
and T*? is the 2-dimensional torus R*/2zZ°. X, X,, X, denote vector
fields defined by

Xo=—(00(x)0,, X,=0,, X,=a()d,
and S is a subset of T? defined by
S={x e T*: dim Lie (x)<2},

where Lie (2)={X(z): X € Lie (X,, X,, X,)}.

Theorem. Assume that

(1) ol (x)=0 on S.
Then the operator
P=3+a(x)o:
is globally hypoelliptic in T* if and only if the system

(2) xZZjASzXz(x)? &, eR

1s controllable in T°.

Remark., The author does not know whether or not Theorem is
valid without the assumption (1). It is to be noted that Theorem
remains valid in case the set S and its boundary 8S are nonsmooth.
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If S=¢, then the operator P is locally hypoelliptic in 7T* (cf. Oleinik
and Radkevich [9]), and further, if the operator P is locally hypoel-
liptic in T?, then the system (2) is controllable in every subdomain of
T? (c¢f. Amano [1]).

1. A criterion of global hypoellipticity. In this section, let 2
be an open set of R* and let P be a degenerate elliptic-parabolic
operator of the form

d [
P= 3" a"(x)d,0,4+ >, b¥(x)9,+c(x)
=1

iyi=1
with real coefficients in C~(2). X, X,, ---, X, denote vector fields
defined by

Xu= 5045,
Lie (x) is a distribution (in the sense of differential geometry) defined
by
Lie (z)={X(x): X e Lie (X,, X,, - - -, X))},

where Lie (X,, X,, - -+, X,) is the Lie algebra generated by the vector
fields X, X,, - -+, X,. S denotes a set of all points x of £ such that
dim Lie (x)<<d. |||, (s € R) stands for the Sobolev norm. P, is a
differential operator defined by P, =[0%, PI.

Proposition. Assume that S is compact, and assume that for any
0>0, for any multi-index B (1<|B|<2) and for any N>O0 there is an
open neighborhood U of S in 2 such that

(3) lul, <CU Pully+lull-», ueCy(U)
and
(4) | Pgll- i <6 Pullo+C [[ull-y, ue CyU),

where C is a nonnegative constant depend on 3, B, N and U. Then the
operator P is globally hypoelliptic in Q.

This proposition is a re-formation of theorems given by Fedii [3],
Morimoto [8] and Oleinik and Radkevich [9].

2. An example of globally hypoelliptic operator. Let P be a
differential operator of the form

P=3}t+a(x)d

with nonnegative coefficient a(x) in C~(T?).

Lemma 1. For any compact set K of R

||u[|3g%(diam K2 ||Pu|(§—|—s1;p AR u e C(RY,

Lemma 1 follows immediately from Poincaré’s inequality.
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Lemma 2. For any compact set K of R?

2
3 IPyulp<2 (3] sup otal) | Pull fuly, e CRCED.
Since
[0,a(x) P < 2(sup |d5a alx) (xeK,i1=1,2),
K
we easily have Lemma 2.

Proof of Theorem. Lemmasl,2and (1)imply (8)and (4). Hence,
the “if” part of Theorem follows from Proposition. It is easy to con-
struct a solution u ¢ C~(T?) satisfying Pu e C*(T?), when the system
(2) is not controllable in 7?; the “only if” part of Theorem is proved.
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