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In this paper we consider symbols P(x, &) satisfying certain esti-
mates such as |9f,P(x, £)|<CA+£)-** for every 1=1,2,---,n and
£=0,1, ---,n+1, and we give a sufficient condition under which the
associated pseudo-differential operators P(x, D.) are bounded on L”
=L?(R"), where 1<p<oo.

We shall also show that our condition is sharp, by constructing
an operator which is not L?-bounded for any 1<<p<oo.

To obtain the result we establish a version of the Littlewood-Paley
decomposition theorem of the space L?(R") of parabolic type and
product type.

1. Statement of the theorem. Let n,n, ---,ny be a family of
positive integers. We put n=n,+n,+---+n, and

A={leN;n+-- +n_ +1ZI<n+ - 4n, 40}
for v=1,2, ---, N.

We regard R® as R" X R™ X ---X R", and denote x € R" as
=", .-, ™), where 2 =(x,),c,, € R™”. We also give a weight
M=WM", ..., M™) to R", where each M® = (m,),., satisfies

minm,=1.
ledy

For y=(y,),c4, € R™ we define the action of te R*={t; t=0} to ¥
by t"“y=(t"y,),c,, and we denote by [y], the only pocsitive numkber ¢
satisfying ¢~ y=0t )"y e{y e R™; |y|=1}. (For y=0 we set [0],
=0.) For xeR"* we put t"x=0*¥V2®, ... t""g™), If f(x) is a
function on R*, then for v=1,2, ---, N and y € R™ we write

AP f(@)=f@®, -, 20—y, - -, xD)— f(2).
Now we introduce a notion to state our main theorem.
Definition. We call a set of functions {w,(t,), w,(t,, t,), - - -, 0x(t;, ts,

<, t} a modulus of continuity if it satisfies the following three
conditions :

1) Each o,(t,t, ---,t,)is a function on (R*) into R*.

2) o/t,t, ---,t,) is monotone-increasing and concave for each
t,, where 1<k=<y.
3) wv+ﬁ(t1? tz, tt tu+/;)_£_min {2yw»(t1y ] t,), 2Vw/1(tv+19 Tty tv+y)}'

Theorem. The following three conditions concerning moduli of
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continuity are equivalent :
1) I f b, by = S gt dt,. . dt,< oo
bt -
for every v=1,2, ---, N.

2) Suppose that a symbol P(x, &) satisfies the following estimates
*p) for all p=0,1, ---,N:

(*0) Foreveryv=1,2,---,N,led, and k=0,1, ---, n+1 we have

|05, P(x, &)|<CA+[&0],) ™",

(*p) For every v=1,2, ..., N, 1<y1)<»@2)<---<v(wZN,
Yy, eR>Y, -y, eRw, led and k=0,1, - .-, n+1 we have

‘Agfl(m(. .. (Aj(/»#(m){aglp(x’ 5)}) . )\
§Cwﬂ([?/1]p<m ) [yp]v(ﬂ))(l+[$(y)]v)_m”6'

Then the associated pseudo-differential operator P(x, D,) s
bounded on L*(R™) for all 1<p<oo.

3) For every symbol P(x, &) satisfying the estimates (*p) for all
1=0,1, --- N there exists 1<<p<oo such that P(x,D,) is bounded on
L»(R).

2. Outline of the proof of 2)—3)—1) and remarks. The asser-
tion 2)—38) is trivial. If a modulus of continuity {w,(,), - - -, wy(,, t,,

, ty)} does not satisfy the condition 1), then we can construct a
symbol P(x, &) such that the estimate (*1) holds for every 4=0,1,---, N
and that the associated operator P(x, D,) is not bounded on L?(R") for
any 1<p<oo. This implies the assertion 3)—1).

Remark 1. It was shown in Coifman-Meyer [1] that the condi-

1
tion j t~lw,(t)*dt < oo is necessary for the L*-boundedness of the oper-
0

ators associated with symbols satisfying (*0) and (*1). In case N=2,
the hypothesis 1) is satisfied if

(o) f t-1(—log £ 1oyt dt < oo,
since we have '
Jl. . .r o, - L) dt,- - - dt,
0 o -t
[l oy

£t
=v4”*1jl (—log £y “’ll(f)z dt.
0

v

On the other hand, if w,(t) is a continuous, monotone-increasing,
concave function which does not satisfy (xxx), then we can construct
a modulus of continuity which does not satisfy the condition 1) by
putting o,(t, - -, t,)=2""0, (min {t,, - - -, £,}).

Remark 2. The L*-boundedness of pseudo-differential operators
with symbols satisfying similar estimates as (*¢) was shown in [1] in
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the case N=1and M=(1, ---,1). They assumed the estimates of the
derivative 9:P for each « e N*. Muramatu-Nagase [3] showed that
the estimates of 9:P for « satisfying |¢|<n+-2 are sufficient. The case
N=1and M=+(, ---,1) was treated by Yamazaki [6].

For other L?-boundedness theorems of this type, see Mossaheb-
Okada [2] and Nagase [4].

3. OQutline of the proof of 1)—2). Let ,(t) be a C -function on
R+ satisfying 0<+,(0)Z1, J(8)=1 (tL1) and +,(t)=0 (t=4/3). For
7=1,2, ... we put ;&)=,27/t)—,2'-7t). Then we have the fol-
lowing.

Lemma 1. Suppose thata e R*, 1<v<N, K=(k, ---, k,) e N* and
u(x) e LP(R™), where 1<p<oo. If we put

U, @)=F[exp (¢ 35, aP- 275 PED)p ([ED],)- - A (X L)AE)] ().
Then we have the estimate
1 kews 12, k@21 < B([T4-. log @+[aP]) ||l
for some constant B independent of a.

This lemma can be shown by virtue of a non-isotropic version of
the Calderén-Zygmund decomposition theorem (see Stein [5], Chap. I)
and the use of the Rademacher functions (see [5], Chap. IV). Lemma
1 and the standard duality argument yield the following.

Lemma 2. Suppose that 1<p<co, 1<v<N and B>1. For
K e N* we denote by I, the set of &e R" satisfying [EP],<B for all j
such that 1<j<v and k;=0 and 2¥B~'<[¢D],<2%B for all j such that
1<j<vand k;=1. If a family of functions {u(®)}iey» Satisfies the
condition supp u()C I, and the estimate

Qo kens [Uk (@)Y 2 o ony < 00,
then the sum w(x)=7 xcn» Ux(x) is well-defined in L?(R"), and we have
the estimate ||u(x)| ., ZC | Qo ur(@) )| 0.

The theorem can be proved in the same manner as in [1]. We
decompose “reduced symbols” into 2 parts, and estimate each part
by virtue of Lemma 1 and Lemma 2. Details will be published else-
where.
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