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In this paper we consider symbols P(x, ) satisfying certain esti-
mates such as I3P(x,)I<C(1-+-)-’/ or every /--1,2, ...,n and
k-0, 1, ..., n+l, and we give a sufficient condition under which the.
associated pseudo-differential operators P(x, Dx) are bounded on
L’(R), where 1 p
We shall also show that our condition is sharp, by constructing

an operator which is not L-bounded or any 1
To obtain the result we establish a version of the Littlewood-Paley

decomposition theorem o the space L(Rn) of_ parabolic type and
product type.

1o Statement of the theorem. Let n, n, ..., n. be a family of
positive integers. We put n-n/n./ +n and

A={leN; n+.../_+l_l_n+...+_+n}
for ,--1, 2, ..., N.

We regard R as RnlX R2X X R’, and denote x R as
x--(x (1), ..., x(V)), where x()-(xt)ez, e R. We also give a weight
M=(M, ..., M(v)) to R, where each M(--(m)tz satisfies
min mt 1.
IA

For y=(y) R we define the action of t R+={t t0} to y
by t"’y=(tyt)tez, and we denote by [y] the only positive number t
satisfying t-’’y-(t-)’y e{y eR’; lyl--1}. (For y--0 we set [0]
--0.) For x eR we put t’x--(t"x(>,...,t’’x()). If f(x) is a
function on R, then for ,-1, 2, ..., N and y e R" we write

f(x) f(x, x --y, ..., x) f().
Now we introduce a notion to state ur main theorem.
Definition. We call a set of unctions {w(t), o(t, t), ..., o,(t,

.., t)} a modulus of continuity if it satisfies the ollowing three
conditions"

1) Each o,(t, t., ..., t,) is a function on (R/)" into R/.

2) w(t, t,..., t,) is monotone-increasing and concave for each
t, where lk.

3) o,/,(t, t, ..., t,/,)min {2,o,(t, ..., t,), 2%(t/, ..., t/,)}.
Theorem. The following three conditions concerning modtli of
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continuity are equivalent"

1) o...o E(t’’t’’’’’t)

for every =1, 2, ..., N.
2) Suppose that a symbol P(x, ) satisfies the [ollowing estimates

(*) for all =0, 1,..., N"
(*0) For every ,= l, 2, N, A and k= O, 1, n+ l we have

5P(x, )lC(1 + [()])-.
(*) For every ,=1,2, ...,N, 1,(1),(2)...,()N,

y e R(), ..., y, e R.’, e A and k=0, 1, ..., n+l we have

y xyz

Then the associated pseudo-dierential operator P(x, Dx) is
bounded on L’(R) for all lp.

3) For every symbol P(x, ) stisfying the estimates (*) for all
=0, 1,..., N there exists lp such that P(x, D) is bounded on
L(R).

2. Outline of the proof of 2)3)1) and remarks. The asser-
tin 2)3)is trivial. If a modulus of continuity {w(t), o.., w,(t,, t,

.., t)} does not satisfy the condition 1), then we can construct a

symbol P(x, ) such that the estimate (*Z) holds for every =0, 1,..., N
and that. the associated operator P(x, D) is not bounded on L’(Rn) for
any lp. This implies the assertion 3)1).

Remark 1. It was shown in Coifman-Meyer [1] that the condi-

tion [t-%(t)dt is necessary or the L-boundedness of the oper-

ators associated with symbols satisfying (*0) and (’1). In case N2,
the hypothesis 1) is satisfied if

t-’(--log t)-’(t) dt
Jo

since we have

tl...t.

fo"" "1o {2- min (t)} dt...dt
t...t

=4-10 (--log t)-l(t)2dt.
t

On the other hand, i (t) is a continuous, monotone-increasing,

concave function which does not satisfy (***), then we can construct
a modulus o continuity which does not satisfy the condition 1) by

putting (t, ..., t)=2- (min {tl, ..., t}).
Remark 2. The L-boundedness of pseudo-differential operators

with symbols satisfying similar estimates as (*) was shown in [1] in
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the case N-1 and M=(1,..., 1). They assumed the estimates of the
derivative 3P or each a e N. Muramatu-Nagase [3] showed that
the estimates o 3P or a satisfying la]n/2 are sufficient. The case
N=I and M:/:(1, ..., 1) was treated by Yamazaki [6].

For other L-boundedness theorems of this type, see Mossaheb-
Okada [2] and Nagase [4].

3. Outline of the proof of 1)2). Let G(t) be a C-functi0n on
R satisfying 0G0(t)G1, q0(t)=l (tG1) and qo(t)-0 (t=4/3). For
.i-1, 2, we put q(t)=G(2-t)-0(2-;t). Then we have the fol-
lowing.

Lemrna 1. Suppose that a e Rn, IG,GN, K--(lcl, ..., k) N and
u(x) e L(Rn), where lpc. If we put
ta.K(x)---l[exp (i :1 a(j)" 2-’(J$())q,([$(1)]l)

Then we have the estimate
t(KeN, IUa,K(X)I2)1/2 LpB(}=I log (2/[a(J)])) u

for some constant B independent of a.
This lemm can be shown by virtue o a non-isotropic version o

the CalderSn-Zygmund decomposition theorem (see Stein [5], Chap. I)
and the use of the Rademacher unctions (see [5], Chap. IV). Lemma
1 and the standard duality argument yield the following.

Lemma 2. Suppose that lpoo, I<,N and BI. For
K N we denote by IK the set of R satisfying [()]<B for all ]
such that I]G and k=0 and 2’JB-<[(.]<2B for all ] such that
1G], and k=l. If a family of functions {u(x)}e, satisfies the
condition supp u()I and the estimate

I(KN [UK(X)]2)1/2 Lp(Rn)<
hen the sm u(x)-- u(x) is well-defined in L’(R), and we have
the estimate u(x) gC ( u(x) )/1 .

The theorem can be proved in the same manne as in [1]. We
decompose "reduced symbols" into 2 parts, and estimate each part
by virtue of Lemma 1 and Lemma 2. Details will be published else-
where.
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