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In [3], G. Shimura studied the generalized confluent hypergeo-
metric functions on tube domains of several types. A motive of his
study can be seen in the application to the Eisenstein series as de-
veloped in his recent paper [4]. In this paper, we shall describe analo-
gous results in the case of tube domains constructed from Cayley’s
octonion (which includes the case of exceptional simple tube domain).

We denote by €, the real Cayley algebra, and we fix the standard
basis (e.g. cf. [2]). For each integer m (1<m<3), we put x(m)=4m
—3. We define a vector space J%* over R by IV ={x € M,,(Cp)|'T=1x},
where the bar denotes the Cayley conjugation. We supply I with
a product by xzoy= (1/2)(xy + yx), with this product, J& becomes
a real Jordan algebra. When m =3, J% is called the exceptional
Jordan algebra (cf. [1]). If x=(x,;) € IFY, we define tr (x)=>] z,; € R
and define an inner product (,) on J& by (x, y)=tr (x oy). Moreover,
we define a polynomial function det on I as follows. When m=3,

det (x)= ng=1 xii_xuN(xza)-‘ Lo,N (2,5) — xaaN(xlz)‘}‘ T((xmxz:;)xla),

where N(a)=ad=aa, T(a)=a+a (0 € €;). In the case m=2, we define
as det (¥)=x,,2,,—N(x,,). We denote by &,, the set of squares xox of
elements of I, and by &;;, the interior of &, ; then &; is a convex
open cone in JF. & is called the exceptional cone. Identifying
C™m with J§” =I5’ C, we define a tube domain H,, by H,,={x+iy|

eI, ye Ry} Then H, is the exceptional tube domain of type E,
(cf.[1]) and H, is the complex upper-half plane. We define a Euclidean
measure dx on I by viewing I as R™™. Now we define the gener-
alized gamma function I, (s) associated with the cone &, by

()= J €7 det (e ~"da,

then the integral converges for Re (s)>«(m)—1 and satisfies the fol-
lowing identity :

Ios) =z T I'(s—dn),
n=0

where I'(s) is the ordinary gamma function (e.g. cf.[1]). Put, for
ge 8, heJg”, and (a, p) € C?,
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(9, 1 @, B)= e~ @ det (v+h)**™ det (x—h)P-™dz,

rEhefE
(g, h; a0, B)=det (9)***~*™n,(g, h; a, P).
We note that the function 5, represents by the generalized confluent
hypergeometric function

Culg; a, ﬁ):j e~ det (e, +2x)* <™ det ()P ~=™dx,
i

where g € &, and ¢,, is the identity matrix of degree m. We denote
by I%(p, q, r) the subset of I consisting of the elements with p posi-
tive, q negative, and r zero eigenvalues (p+qg-+r=m). The precise
definition of eigenvalue is as follows. When m=3, the eigenvalues
of an element & of J§ are defined as the roots of a cubic equation
' —tr (Wt*+-tr (h X h)t —det (h)=0, where xXy denotes the crossed
product of z, ¥y € J¢V. In the case m=2, we define the eigenvalues of
an element 7 € I to be the roots of a quadratic equation t*—tr (h)t
+det (h)=0. Moreover, by similar way in [3], we shall introduce the
notion of the eigenvalues of & relative to g for he Ig¥ and g e K;;,. In
the case of degree 3, we define them to be the roots of an equation
' —(g, Mt*+ (g X g, hxXh)t—det (¢9) det (h)=0. When m = 2, they are
defined as the roots of an equation t*— (g, h)t-+det (g) det (2)=0. Now
we denote by d,(hg) (resp. z.(hg)) the product (resp. the sum) of all
positive eigenvalues of i relative to g. Moreover, we put 6_(hg)
=0.((=h)g), r-(hg)=7.((—h)9) and z(hg)=7.(hg)+7_(hg). We also
denote by p(hg) the smallest absolute value of non zero eigenvalues of
h relative to g if h=0; w(hg)=1 if h=0. Now we define, for g€ &,
h e I3 (®, q,7), (a, B) € C*,
00, 13 @, =271 (B—A(m—p) T —4(m— g))~*
I (a+B—k(m)) "5, (hg) =~
-6_(hg)™m-P-2y¥(g, h; @, p),

where we understand that I, is the constant function 1. The first
main theorem can be stated as follows.

Theorem 1. Function v, can be continued as a holomorphic
function in (a, p) to the whole C* and satisfies
(1) on(9, h; @, B)=0,(g, h; e(m)+4r—B, x(m)+4r—a),
where r is the number of zero etgenvalues of h. Moreover, for every
compuact set T of C?, there exist two positive constants A and B de-
pending only on T such that
(2) |0n(g, 5 & B)|< Ae "0 (L4 p(hg)~?)
for every (g, h) € R: X I and every («a, f) e T.

This result is in analogy to Theorem 4.2 in [3].

Now consider a series

S, L, ; o, )= e, det (z+a)~* det (+a)~*.

Here z is a variable on H,,, L, is a lattice in the space JI% and («, B)
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€ C*. We see that this series is locally uniformly convergent on H,,
X{(a, B) € C*|Re (a+p)>2k(m)—1}. Following to [3], we introduce the
notion of an algebraic lattice L in J%, which means a lattice whose
elements have algebraic components when we identify J§» with R™™,
Using Theorem 1, we can prove the following theorem
Theorem 2. Let L be an algebraic lattice in Ig. Then
I'(a+B—k(m))'S,(z, L; &, B)
can be continued as a holomorphic function in (e, ) to the whole C>.
Now we put
S,(z, L; a)=7) .. det (z+a)°,
S¥(z, L ; oz):lin(r)l Sz, L; a+s,s).

Then the series S,.(z, L; a) is convergent if Re («)>2¢(m)—1 and de-
fines a holomorphic function in (2, «). Obviously, S*(z, L ; «) is equal
to S,.(2, L; @) if Re (¢)>2¢(m)—1. Furthermore we have the follow-
ing results.

Theorem 3. Suppose L is an algebraic lattice in Jg°. Then
Sk(z, L ; a) coincides with S,,(z, L ; a) for Re (a)>k(m). Moreover we
have

w(FgY | L)SY(z, L ; k(m))=274mm=Dg-msm [ (g(m))~' > 277 Mgt
where the sum extends over all the elements in L' NIJ@(p, 0, r) (L' is
the dual lattice of L and r(h)=7) and u(J% /L) is the measure of I /L.

Finally we shall remark on an application of the above results.
W.L. Baily, Jr. studied the Eisenstein series of the exceptional
modular group I" ([1]). Following his paper [1], we consider a series

E(s,2)=20erin |12, N,  (s€C,zeH),

where j(z, 7) is the functional determinant of the transformation 7 at
the point z and I, is a subset of I" (cf. [1]). Now we put

Tu(®=n""1",(s) and C(,(s)=[[n7 C(s—4n),
where {(s) is the Riemann zeta function. Moreover we put

§(8)=T,(s/2){,(s) det (Im (2))*”E(s, 2).

The Fourier coefficient of E(s,z) can be essentially expressed as a
product of the “singular series” and the above-defined function w,.
Therefore it is conjectured that the function £(s) can be continued as

a meromorphic function in s and satisfies a functional equation of the
form

£(s)=£(18-s).
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