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In [3], G. Shimura studied the generalized confluent hypergeo-
metric functions on tube domains of several types. A motive of his
study can be seen in he application to the Eisenstein series as de-
veloped in his recent paper [4]. In this paper, we shall describe analo-
gou.s results in the case of tube domains constructed rom Cayley’s
octonion (which includes the case. of exceptional simple tube domain).

We denote by R the real Cayley algebra, and we fix the standard
basis (e.g. cf. [2]). For each integer m (lmg3), we put x(m)=4m
--3. We define a vector space () over R by h)={x e M(R)It=x},
where the bar denotes the Cayley conjugation. We supply () with
a product by x oy= (1/2)(xy + yx), with this product, h) becomes
a real Jordan algebra. When m=3, h) is called the exceptional
Jordan algebra (cf. [1]). I x= (xi) e (’), we define tr (x)= , xi e R
and define an inner product (,) on h) by (x, y)--tr (x y). Moreover,
we define a polynomial function det on () as iollows. When m=3,

det (x)-- I-I= x, xN(x) xN(x) xN(x)+T((xx)),
where N(a)=aa=aa, T(a)=a+a (a e ). In the, case m=2, we define
as det (x)= xx--N(x). We denote by the set of squares x x of
elements of (), and by +, the interior of then + is a convex
open cone in (). / is called the exceptional cone.. Identifying
C() with (c) )(R) C, we define a tube domain H by H= {x+ iy]
x e (), y e +}. Then H is the exceptional tube domain of type E
(c. [1]) and H is the complex upper-half plane. We define a Euclidean
measure dx on ) by viewing () as R(). Now we define the gener-
alized gamma function F(s) associated with the cone + by

e-tr (x) det (x)s-(m)dx,F(s)=
+

then the integral converges or Re (s)(m)--I and satisfies the o1-
lowing identity"

m--I

F(s)==(- [I F(s--4n),
=0

where F(s) is the ordinary gamma unction (e.g. cf. [1]). Put, or
g e +, h e (), and (a, fl) e C,
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(g, h , fl)= | e -(’x) det (x + h)-() det (x-- h)-()dx,
3x+/-h+m

*(g, h a, )= det (g)"+ -()(g, h a, fl).
We note. that the function represents by the generalized confluent
hypergeometric function

(g," , )=_.[ e-(,x) det (+ x)-() det (x)-()dx,

where g e and s is the identity matrix o degree m. We denote
by )(p, q, r) the subset of ) consisting of the elements with p posi-
tive, q negative, and r zero eigenvalues (p+q+r=m). The precise
definition of eigenvalue is as follows. When m=3, the eigenvalues
of an element h of ) are defined as the roots of a cubic equation
t-tr (h)t+tr (h h)t--det (h)= 0, where x y denotes the crossed
product of x, y e ). In the case m=2, we define the eigenvalues of
an element h e )to be the roots o a quadratic equation t--tr (h)t
+det (h)=0. Moreover, by similar way in [3], we shall introduce the
notion of the eigenvalues of h relative to g or h e) and g e . In
the case of degree 3, we define, them to be the roots of an equation
t- (g, h)t+ (g g, h h)t- det (g) det (h)= 0. When m 2, they are
defined as the roots of an equation t- (g, h)t+ det (g) det (h)= 0. Now
we denote, by +(hg)(resp. r+(hg)) the product (resp. the sum) of all
positive eigenvalues of h relative to g. Moreover, we put 3_(hg)

+((-- h)g), r_ (hg)= r ((-- h)g) and r(hg)= r+ (hg) + r_ (hg). We also
denote by z(hg) the smallest absolute value, o non zero eigenvalues of
h relative to g if h=0; z(hg)= 1 if h--0. Now we define, for g e ,
h e ,()(., q, r), (a, fl) e C,

w(g, h; a, fl)=2-"-qF(fl-4(m-p))-Fq(q--4(m-q))-F(a+fl--(m))- (hg)() -"-q

3_ (hg)() -(g, h , fl),
where we understand that F0 is the constant function 1. The first
main theorem can be stated as ollows.

Theorem 1. Function w can be continued as a holomorphic

function in (, fl) to the whole C and satisfies
1 ) w(g, h; a, fl)=w(g, h; (m)+4r--fl, (m)+4r--a),

where r is the number of zero eigenvalues of h. Moreover, for every
compact set T of C, there exist two positive constants A and B de-
pending only on T such that
( 2 ) [w(g, h , fl)]gAe-(q)/(1 +z(hg)-)
for every (g, h) e ) and every (, fl) e T.

This result is in analogy to Theorem 4.2 in [3].
Now consider a series

S(z, L , fl)=e det (z +a) det (+a)-.
Here. z is a variable on H, L is a lattice in the space ) and (a, fl)
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e C2. We. see that this series is locally uniformly convergent on H.
X {(c, fl) e C21Re (a+/)2(m)-- 1}. Following to [3], we introduce the
notion of an algebraic lattice L in ), which means a lattice whose
elements have algebraic components when we identify ) with R().
Using Theorem 1, we can prove the ollowing theorem

Theorem 2. Let L be an algebraic lattice in . Then
F(/-(m))-lS(z, L , fl)

can be continued as a holomorphic function in (, fl) to the whole C.
Now we. put

S(z, L a)=e det (z +a) -",
S*(z, L a)= lira S(z, L + s, s).

S-0

Then the series S(z, L;a)is convergent if Re (a)2(m)-I and de-
fines a holomorphic unction in (z, a). Obviously, S*(z, L; ) is equal
to S(z, L;a) if Re (a)2(m)-l. Furthermore we have the follow-
ing results.

Theorem 3. Suppose L is an algebraic lattice in (). Then
S*(z, L ) coincides with S(z, L ) for Re (a)(m). Moreover we
have

[(()/L)S*(z, L (m))=2-(-l)i-()F((m))-I 2-()e

where the sum extends over all the elements in L’ F)(p, O, r) (L’ is
the dual lattice of L and r(h)= r) and [(F)/L) is the measure of F)/L.

Finally we shall remark on an application of the above results.
W.L. Baily, Jr. studied the Eisenstein series of the exceptional
modular group F ([1]). Following his paper [1], we consider a series

(s, z)-E/o I](z, ’)1, (8 e C, z e H),
where ](z, Y) is the unctional determinant of the transformation 7 at
the point z and F0 is a subset of F (cf. [1]). Now we put

Y(s)=-F(s) and (s)=[-l(s--4n)nO

where (s) is the Riemann zeta unction. Moreover we put
(s)=Y(s/2)(s) det (Im (z))/E(s, z).

The Fourier coefficient o E(s, z) can be essentially expressed as a
product of the "singular series" and the above-defined unction .
Therefore it is conjectured that the unction (s) can be continued as
a meromorphic unction in s and satisfies a functional equation of the
2orm

(s)=(8-s).
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