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The second and third authors introduced in [4] an integral invar-
iant T'(k) of a classical (tame) knot k£ such that (1) T(k) is invariant
under knot cobordism, (2) g*(k)<T(k) and (8) T(k)=Arf (k) (mod 2),
where g*(k) and Arf (k) are the slice genus and the Arf invariant of
k, respectively. We call T'(k) the T-genus of k. The purpose of this
paper is to give an alternative definition of the T-genus and to note
that the T-genus induces a metric function d, on the knot cobordism
group X defined by Fox-Milnor in [2]. Some properties of the space
(X, d,) are described without proof here, but more properties contain-
ing the details will appear in “On a geometry of the knot cobordism
group”.

Let R be the Borromean rings (ef. Fox [1, p. 131]). We denote
by k#,(R,+ - - - +R,) a knot obtained by a fusion from the split union
k+R,+-.-+R, of a knot k£ and » copies R, ---, R, of R (see [3] for
the definition of fusion). Note that the knot type of the resulting
knot depends on a choice of the fusion-bands.

Lemma 1. Given a knot k with T(k)>1, there is a knot k' =Fk#,R
such that T(K)<T(k)—1.

Proof. Let T(k)=r. By [4, Proof of Theorem (2)] there is a
cobordism surface of genus 0 between k¥ and R,+-.-+R,. Then we
obtain a cobordism surface of genus 0 between k+R, and R,+ - - - +R,.
By the deformation theory [3] of cobordism surface, some &'=k#,R; is
cobordant to some k”=04,(R,+ - - - +R,) (0 is the trivial knot). Since
TEY=T(") and T(k")<r—1, the desired result follows.

For a knot k the minimal number of r such that some k#,(R,+ - - -
+R,) is a slice knot is denoted by B(k).

Theorem 2. T(k)=B(k).

Proof. By Lemma 1 T(k)>B(k), since (- - -((k#,RD4,R.)- - - )4,R,
is modified as k#,(R,+ - - - +R,) by deforming and sliding the fusion-
bands (cf. [3, Lemma 1.14]). To see that T(k)<B(k), let B(k)=s.
Since some k#,(R,+ - --+R,) is slice, k+R,+ - - - + R, bounds a surface
of genus 0 in R0, +o0). So there is a cobordism surface of genus 0
between %k and R,+..-.+R,. By the deformation theory [3], &k is
cobordant to some k'=04,(R;+---+R,). Then T(k)=T({%)<s=B(k),
completing the proof.
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For an element x=[k] of the knot cobordism group X, we let T'(x)
=T(k). Define a function d,: X X X—{0, 1, 2, 3,--.} by d.(z, ¥)
=T(x—y) for all z,y in X.

Theorem 3. The function d, is a metric function on X.

Proof. From [4] or Theorem 2 we see that (1) T(x)>0 (Yx e X)
and T(x)=0 iff =0, ) T(—x)=T(x) Yrxe X) and B) T(x+v)<T(x)
+T(y) (Yo, Yye X). Then it is easily checked that (1) d,(z, y)
>0 (Yo,Yy e X) and d(z,y)=0 iff z=y, @) d(z,y)=d(y, ) ",y
e X) and )Y d(x, ¥)+d,(y,2)>d(x,2) Yx,Yy, ¥z ¢ X). This completes
the proof.

Corollary 4. |[T@)—TW)|<T@x+y)<T(®)+T(y) for all x,y e X.

For any claim stated below, no proof will be given here.

Claim 5. For any x=I[k] and x'=[k},R], d(x, 2")=|T(x)—T(2")|
=1.

By Lemma 1 and Claim 5, when T'(x) >1, we have an x’ such that
T(x)=T(x)—1. For any x can one always find an x' such that T(x')
=T(x)+1? (The answer is yes if T(x)<1.) Let S(x) be the unit
sphere, {y € X|d,(x,y)=1} around .

Claim 6. (1) S(@)=xz+S0)={x+v|y € S(0)}, (2) S(x) is an infinite
set, (8) X=J,ex S(x) and (4) S(x) N SW) #¢ iff x=y or d,(x,y)=2.

Is there a pair x, y with d(x, y) =2 such that S(x)=Sy)? For any
pair x, y with d(x, y)=2, does S(x) N S(y) contain at least two points?
Is it an infinite set? Let k, be the double knot with # full twists, so
that k_,, k,, k, and k, are the trefoil, trivial, figure eight and stevedore
knots, respectively. Let a,=[k,.,]. Noting the index, a,.,=0.

Claim 7. T(an)glln]—”’ d(a,,a,-)=1and for n+0, d(a,_,, G q)
=2,

It is conjectured that the above inequality is replaced by the
equality, whereas g*(k,.)<1. It is true when |»|<3. A sequence
(X, 24y + -+, x,) of points 2, in X with x,£x,,, for all 7 is called a
polygon. The curvature of a polygon L=(x,, x,, - - -, %,) at x,, 10, n,
denoted by 0!=6(L, x,) is defined by
d(x,_, )"+ d(x,, ) — (@1, 24 ,1)°

2d(,_1, ) (), ;1)
and 0<6'<wz. The sum §=0(L)=> -} 6 is called the total curvature
of L.

Claim 8. (1) For any y,zeS(x) with y+z, the curvature
0((y, x,2), x)=0, (2) for any x,y in X with d(x, y)=d>2, there exists
a polygon (x,, z,, - - -, Z,) of total curvature 0 such that x,=z, v,=y and
d(x,, x)=|i—7| for all ¢,5. Moreover, if y—x+dz for any ze S(0),
then at least two such polygons exist.

The curvature of the polygon (x,0, —x) at 0 is also called the

cos (r—0")= —cos §'=
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refraction of x. For example, let b,=na_, and ¢,=b,+a, for n>1.
We have that T'(2b,)=2T(b,)=2n, T(2¢,)=2n and T(c,)=n+1. The
refraction of b, is 0, but the refraction @, of ¢, is given by the identity
cos 0,=n*—2n—1)/(n+1)’.. Finally, J. Tao pointed out that the space
(X,d,) is regarded as a tolerance space defined by Zeeman in [5],
where the tolerance relation ~ is given by the following: x~y if and
only if d,(z, y)<1.
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