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(Communicated by Kunihiko KODAIRA, M. ft. A., March 12, 1983)

The second and third a.uthors introduced in [4] an integral invar-
iant T(k) of a. classical (tame) knot k such that (1) T(k) is invariant
under knot cobordism, (2) g*(k)_T(k) and (3) T(k)----Arf (k)(mod 2),
where g*(k)and Arf (k)are the slice genus and the Arf invariant of
k, respectively. We call T(k)the T-genus of k. The purpose of this
paper is to give an alternative definition o the T-genus and to note
that the T-genus induces a metric function dT on the knot cobordism
group X defined by Fox-Milnor in [2]. Some properties o the space
(Z, dT) are described without proof here, but more properties contain-
ing the details will appear in "On a geometry of the knot cobordism
group".

Let R be the Borromean rings (cf. Fox [1, p. 131]). We denote
by k(R+... +R) a knot obtained by a. fusion rom. the split union
k+R+... +R of a knot k and r copies R,...,R of R (see [3] or
the definition of fusion). Note that the knot type of the resulting
knot depends on a. choice of the usion-bands.

Lemma 1. Given a knot k with T(k) _l, there is a knot k’=k#bR
such that T(k’)

_
T(k) 1.

Proof. Let T(k)--r. By [4, Proof of Theorem (2)] there is a
cobordism surface of genus 0 between k and R+... +R. Then we
obtain, a. cobordism surface of genus 0 between k+R and R+... +R.
By the deformation theory [3] of cobordism surface, some k’=kR is
cobordant to some k’=0(R+... +Rr) (0 is the trivial knot). Since
T(k’)= T(k") and T(k")_r--1, the desired result ollows.

For a. knot k the minimal number o r such that some k(R+...
+R) is a. slice knot is denoted by B(k).

Theorem 2. T(lc) B(lc).
Proof. By Lemma. 1 T(k)>_B(k), since (. ((kR)#R)...)#R

is modified as/c(R+... +R) by deforming and sliding the fusion-
bands (cf. [3, Lemma. 1.14]). To see that T(lc)<_B(lc), let B(/c)=s.
Since some/c(Rl+. +R) is slice, /c+R+. +R bounds a, surface
.of genus 0 in R[0, + co). So there is a. cobordism surface of genus 0
between /c and Rx+... +R. By the deformation theory [3], /c is
.cobordant to some /c’=0#(R+...+R). Then T(k)=T(tc’)_s--B(k),
completing the proof.
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For an element x-[k] of the knot cobordism group X, we let T(x)
T(k). Define a function dr" X X X-+ {0, 1, 2, 3, } by dr(x, y)

--T(x-y) for all x, y in X.
Theorem 3. The function dr is a metric function on X.
Proof. From [4] or Theorem 2 we see that (1) T(x)_O (Vx e X)

and T(x)=O iff x=O, (2) T(--x)=T(x)(vxeX) and (3) T(x+y)_T(x)
+T(y) (Vx, vyeX). Then it is easily checked that (1)’ dr(x, y)
_0 (Vx, Vy e X) and dr(x, y)=O iff x=y, (2)’ dr(x, y)--dr(y, x) (Vx, Vy
e X) and (3)’ dr(x, y)+dr(y, z) _dr(x, z) (vx, Vy, Vz e X). This completes
the proof.

Corollary 4. T(x)-- T(y)]<_ T(x+ y)

_
T(x)+ T(y) for all x, y e X.

For any claim stated below, no proof will be given here.
Claim . For any x=[k] and x’--[kR], dr(x, x’)--IT(x)--T(x’)[

By Lemma I and Claim 5, when T(x)_ 1, we have an x’ such that
T(x’)-T(x)--1. For any x can one always find an x’ such that T(x’)
=T(x)/l? (The answer is yes if T(x)_l.) Let S(x) be the unit
sphere, {y e X[ dr(x, y)= 1} around x.

Claim 5. (1) S(x)-- x+ S(O) {x+ y y e S(0)}, (2) S(x) is an infinite
set, (3) X--ex S(x) and (4) S(x) S(y)= iff x-- y or dr(x, y)- 2.

Is there a pair x, y with dr(x, y)-2 such that S(x)--S(y) ? For any
pair x, y with dr(x, y)---2, does S(x) S(y) contain at least two points?
Is it an infinite set? Let k be the double knot with n full twists, so
that k_, k0, k and k are the trefoil, trivial, figure eight and stevedore
knots, respectively. Let an--[]Cn+]. Noting the index, a=0.

Claim 7. T(an)_[In]-lt, dr(a, an_)=l and for n=/=O, dr(a_,,an/,)
2.

It is conjectured that the above inequality is replaced by the
equality, whereas g*(k/) _1. It is true when nl_3. A sequence
(Xo, X,...,x) of points x in X with xg=x. for all i is called a
polygon. The curvature of a polygon L-(x0, x, ..., Xn) at x, i=/=0, n,
denoted by t--t(L, x) is defined by

cos (--t)= --cos t?= d(x_, x)+d(x, x/)-d(x_, x/)
2dr(x_, x)dr(x, x )
n--1and O<_t<_. The sum t=t(L)=: t is called the total curvature

of L.
Claim 8. (1) For any y, zeS(x) with y Cz, the curvature

O((y, x, z), x)=O, (2) for any x, y in X with dr(x, y)=d_2, there exists
a polygon (Xo, x, ..., x) of total curvature 0 such that Xo--X, x--y and
dr(x,x)--li-] for all i,]. Moreover, if y-x=/=dz for any z e S(O),
then at least two such polygons exist.

The curvature of the polygon (x, 0,--x) at 0 is also called the
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refraction of x. For example, let b=na_, and c-b-ao for n_l.
We have that T(2b)-- 2T(b.)- 2n, T(2c) 2n and T(c,)--n+ 1. The
refraction of b. is 0, but the refraction 8 of c. is given by the identity
cos 8-- (n-2n- 1)/(n+ 1). Finally, J. Tao pointed out that the space
(X, dr) is regarded as a tolerance space defined by Zeeman in [5],
where the tolerance relation is given by the following: xy if and
only if dr(x, y)

_
1.
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