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We shall consider the Dirac operator

( )L(c)=c oD+c+V(x) x e R, D-- 1
j=l

where c0 is the velocity of light and a, are 4 4 matrices given by

a= 1 = --i = 1
1 i --1

I1/= 1__1
--1

which satisfy the anti-commutation relation aa+aa=2I (],k
1, 2, 3, 4) with a, (I is the 4 4 unit matrix). The scalar potential

V(x) is assumed to satisfy the following condition (A); there exist
positive constants0 (_1), e0 and a positive integer m_3 such that

1 and m=[-]+3 if 0<-,(A-l) m=3 if >-
and V(x) is a real-valued C-function in R\O satisfying
(A-2) D"V(x)=O([x]-1"l-9 as [x ]-+c (]a]_m),

(A-3) V(x)]_--e (0<r_l),

where D"=D;’D’D, [al=a+a.+a for a multi-index a= (a, a, a) e Z
(>_0).

It is evident that L(c) is formally selfadjoint in the Hilbert space

=[L(Rg]’. A symmetric operator L(c) defined on [C(R)] has the
(not necessarily unique) selfadjoint extension), and is essentially self-
adjoint if c2e (see Kato [7, Chapter V, 4] and note that Arai [3]
proposes a refined result). We denote by Ho(C) the unperturbed self-
adjoint operator with V(x)O.

Let H0(c)=[ 2dE()() be the spectral representation of Ho(c). It

This fact will be also proved elsewhere.
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iS known that Ho(c) is absolutely continuous and a(Ho(c))-(--o,-c]
U [c, c). Let us define

1 I+r dE()() (]= 1 2),P(c)--
r,=l, r= --I.

Then P,(c)(P(c)) is the spectral projection t.o the positive (negative)
spectrum, satisfying

P,(c)+P(c) I.
Moreover we have

(I) (P(c)f)*()=Pj(c, )f()=(/+rj ,=1 k+C
ll+c

or f e Z, and
( 2 ) (Ho(c)P(c)f)()=rc]]+cP(c, )f()
or f e D(Ho(c)), where f() is the Fourier transform of f(x) defined by

(f)()=f() (2)-m e-<’>f(x)dx.

Let H(c) be a selfadjoint extension of L(c) on [C(R)]. If the
potential V(x) satisfies

V(x)=O(Ixl-) (Ixl),
the wave operator

W(c) s-lim exp (itH(c)) exp (-- itHo(c))
exists under some additional conditions (Prosser [8]). If 01,
however, we shall not always expect the existence of W(c) without
modifying exp (-itHo(c)) appropriately, as is shown for SchrSdinger
operators (Dollard [6]).

Noting that
(exp (-itHo(c))f)*()=exp (--itcjll+ c)P(c, )f()

+exp (itcJll + c)P(c, )f()
or f e Z in view o.f (2), we define

exp (--iX(t, c))f=-(exp (-iX(t, c, ))]()),
for f e Z, where

x(t, c, ):ctJll+c +z?)(t, c, )

I ( cs z )Z)(t, c, )=
t

V r ll + c +grad -)(s, c, ) ds,

z?)(t, c, )=0, n=[/],
sgn t 1 (t 0), 1 (t 0).

The idea o.f the choice X(t, c, ) is suggested by Alsholm-Kato [2] and
Buslaev-Matveev [4].

Theorem 1. Assume that V(x) satisfies the condition (A). Let
H(c) be a selfad]oint extension of L(c) on [C:(R)]. Then the modified
wave operator
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W_(c)= s-lim_= {exp 6tH(c)) exp (-iX(t, c))P(c)
+exp (itH(c)) exp (--iX(t, c))P(c)}

exists and the limit is uniform in [Co, c) for any positive number Co.
The proo.f of Theorem 1 is similar to. Buslaev-Matveev [4] and is

given by the stationary phase method. A complete proof of Theorem
1 will be published elsewhere.

Theorem 2. Under the same assumptions as Theorem 1 the
strong limit W(c)=s-lim= W+/-(c) exists and we have

W ()=

where

w)=s-lim e.xp {it( )} { ( z/ r ()(t,D))}-+/- ---+rV exp -it ---+-z
z})(t, ) V(s+r grad z-)(s, ))ds

sgn

z)(t, D=0, n=[/a].
Outline of the proof of Theorem 2. The existence of w) ollo.ws

rom Alsholm [1] or Busla’ev-Matveev [4]. We shall prove only
( 3 ) s-lim W (c)P(c)= W ()P(),
where we put

P() s-lira P(e) (I+)= 0
0

since other cases are pro.red similarly. Set
U(t, c)-exp (itH(c)) exp (-iXl(t, c))P(c)

zl it(_ l z)(t,D))}Uo(t, c)=exp {it(-- + V)} exp {- - +
und consider
( 4 ) W/(c)Pl(c) W (c)P(c)

=(W/(c)P(c)-U(t, c)) + (U(t, c)-Uo(t)P(c))
+ (Uo(t)P(c)-- W/(c)P(c)).

Since s-limt_ U(t,c)=W/(c)P,(c) uniformly for c_1 by virtue o.f
Theorem 1 and s-lim Uo(t)P(c)=W/(c)P(c), we have only to.
prove
( 5 ) s-lim U(t, c)- Uo(t)P(c)
tor any fixed t0 in view o.f (4). Cirincione-Chernoff [5] gives

)}( 6 ) e-tc exp (itH(c))P(c) ; exp it -- +V P()

strongly as c--. On the other hand we have
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etc (exp (--iXl(t, c))P(c)f)^()
--et exp (-itc/ll+c-iZ)(t, c, ))P,(c, )f()

{1 1--exp --it
1+][/c+ 1

)exp (--it []--iz)(t, ))P()f() (c)
in , which yields

(7) e exp(--iX(t,c))P(c) )exp --it z)(t,D) P()

stro.ngly as c. The above (6), (7) and the uniform boundedness of
e- exp (itH(c)) give
U(t, c)=e- exp (itH(c))P(c)e exp (-iX(t, c))P(c)

it(_ 1 D)}P()
Uo(t)P(), as

srongly in , which shows (g). hus the ro.o is completed.
Remark 3. In Yajima [9] the nonrelaivisie limi o. the wave

opera,or W(e) and he seaering opera,or is discussed.
Remark 4. he Coulomb oenial V() e/r satisfies he con-

dition (A) with = 1. hen the wave operator W(e) does not exist.
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