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17. Formation of Singularities for Hamilton-Jacobi
Equation. 1

By Mikio TSUJI
Department of Mathematics, Kyoto Sangyo University

(Communicated by Koésaku Yo0SIDA, M. J. A., Feb. 12, 1983)

§1. Introduction. This note is concerned with the singularities
of global solution of Hamilton-Jacobi equation in two space dimensions :

ou ou :
1 LS (*>_0 , 2B
(1) o S P in {t>0, x € R%}

(2) w0, »)=¢(x) € C7(R?),

where Cy(R?) is a set of C~-functions whose supports are compact. In
this note we assume that f is C~ and uniformly convex. It’s well
known that, even for smooth initial data, the Cauchy problem (1) and
(2) doesn’t admit a smooth solution for all ¢£. Therefore we consider
a generalized solution of (1), (2) whose definition will be given in §2.
The existence of global generalized solutions is already established by
many authors. (See [1] and its references.)

For a single conservation law in one space dimension, a solution
satisfying the entropy condition is piecewise smooth for any smooth
initial data in & ={rapidly decreasing functions} except for a subset
of the first category ([3]-[5] and [8]). T. Debeneix [2] treated certain
systems of conservation law which is essentially equivalent to
Hamilton-Jacobi equation (1) in BR* (n<4), and generalized the results
of [8] to this case by the same method as [8].

One of the classical methods for solving first order non-linear
equations is the characteristic one. Its weak point is that it’s the
local theory. The reason is due to the fact that a smooth mapping
can’t uniquely have the inverse at a point where its jacobian vanishes,
i.e., that its inverse becomes many-valued there. Therefore the solu-
tion takes also many values in a neighborhood of critical points of a
mapping H, defined in §3. The aim of this note is to show how to
choose up the reasonable value of its many values so that the solution
is one-valued and continuous.

The author thanks Dr. A. Grigis for a number of helpful discus-
sion on this problem during his stay at I’Ecole Polytechnique and
I’Université de Paris-Sud.

§2. Generalized solutions. Let’s put p=(p,, »,) € R*, and write

ro=(Lo, L) amd ro=[ o]
1 2 4 7 <ty J<2




56 M. TsuJi [Vol. 59(A),

In this note we assume that f(p) is uniformly convex, i.e., /(®)=>C>0
where C is constant. We now define a generalized solution of (1) and
().

Definition. A Lipschitz continuous function (¢, xz) defined on
R'X R* is called a generalized solution of (1) and (2) if

i) u(t, x) satisfies (1) almost everywhere in R' X R? and (2) on t=0,
i) u(t, x) is semi-concave, i.e., there exists a constant x>0 such that
(3) ut, 2+ y)+ult, v —y)—2ult, ) <k|yf

for any x,y € R? and ¢t>0.

It’s well known that the Cauchy problem (1) and (2) has a unique
global solution with the above properties i) and ii) ([6], [1]).

§ 3. Construction of solutions. The characteristic lines corre-
sponding to the Cauchy problem (1) and (2) are determined by follow-
ing equations:

O'Ci=af/api(p), p,=0 (i=1,2)

with the initial conditions

z0)=y,, p,0)=0p/0y(y) (i=1,2).
On the characteristic line, the value v(¢, ) of the solution satisfies an
equation

V= —f(p)+<p, f'(D)), v(0)=0(¥),
where {p,q) means a scalar product of vectors p and q. Solving
these equations, we have
(4) r=y+tf ¢’z H.W),
(5) v=0¥y)+t{— S’ W+ W), '@}

Then H, is a smooth mapping from R} to RZ, and its jacobian is
given by

oz [oy(t, y)=det U+t (¢’ W))e” W)).

Let’s write A(y)=rf"(¢'(y))¢"'(y) and 2,(y) < A,(y) be eigenvalues of
A(y). Assume min 4(y)=4y)=—M<0 and put ¢,=1/M. Then,
since 0z /oy (¢, ¥)+0 for any t<t, and y € R?, we can uniquely solve (4)
with respect to y and denote it by y=w(, x). We see u(t, x)
=v(t, y(t, x)) is the smooth solution of (1) and (2) for t<¢,. Our prob-
lem is to construct the solution for ¢>¢,.

Suppose that t—t, is positive and sufficiently small. The jacobian
of H, vanishes on X, ={y € R*; 14+t1,(y)=0}. Assume the condition

(A.1) A e grad, 4,(y)+0 on X, and X, is a simple closed
curve.

In this case, X, is parametrized as 3,={(y,(s), ¥(8)); s € I} where
I is an interval and y,(s) € C¥(I) (i=1,2). Put

2= {y(so) e2; ;8 v(t, ¥(s))=0 at s=so}.
By the definition of Whitney [10], a point Y in ¥,—2*¢ is a fold point
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of the mapping H,, i.e.,
(d/ds)x(t, y(s)#0  aty=Y.
Lemma 1. Suppose Y e 3¢ If a number of elements of 3¢ is two
or dv/dy+0 at y=Y, then it follows

ot y)=U+ AN =0  at y=Y.
ds ds

Assume here the following condition :
(A.2) 2¢={Y,Y,})and Y, (i=1,2) are cusp points of H,, i.e.,

2
—;—sﬂ(t’ Y)EO  at y=Y, G=1,2).

When we denote the restriction of v(t,y) on X, by v;(¢,y), the
function v; takes its extremums on 2¢. Especially, if we put v(¢,Y,)
=¢, (1=1,2) and suppose ¢,<¢,, v; takes its minimum at y=Y, and
maximum at y=Y,. Denote by D, the interior of the curve 2, and by
Q, the interior of H,(Y,). Then the curve v(t, y)=c, is tangent to D,
at y=Y, (i=1,2). Moreover, when we put H(Y,)=X, (i=1,2), the
curve H,(Y,) has the cusps at x=X, and X,. See Fig.1. When we
solve the equation (4) with respect to y for any x e 2,, the solution
y=1y(t, ) becomes three-valued. Write these values by ¢,(¢, ), ¢,(, )
and g,(¢, ) where g¢,(¢,2) is in D, for any z e 2,. Then the solution
u(t, )=v(t, y(t, x)) also is three-valued on 2,, i.e., when one puts u,(¢, x)
=v(t, 9,(, ) (=1, 2, 3), the solution takes the values u,(t, x), u,(, x)
and u,(¢, x) on 2,. Next, pick up any number c e (¢, ¢,), and consider
the image of the curve {ye R*; v(t,y)=c} by H,. Then its image
intersects itself only at one point in 2, (see Fig. 1).

v, Y)=c,

H,
————
2@t Y)=c

X,
]
V
>, y" Hw(t, 1)=c) .

Fig. 1

vt Y)=c,

Using these facts, we obtain the following

Lemma 2. 1) u,(t, 2)<u,(t, ) and ut, 2)<u,t,x) for any x ¢ 2,,
ii) The set I'y={x e 2,; u,(t, x)=u,t, x)} determines a smooth curve
combining the points X, and X,.

The dotted curve in Fig. 1 means H;'(I",). For the proofs of these
properties, it’s necessary to see the behavior of the inverse mapping
H;' in a neighborhood of 2,. With respect to this problem, we use
the famous results of Whitney [10]. Since we are looking for a con-
tinuous and one-valued solution, we define the solution
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(6)  ult,x)= {ul(t, x) in 2, ., ={xe2,; ut, ©)—wu,(t, 2)>0},
uy(t, x) in 2, ={xef,; ut, x)—u,(t, v)<0}.
8§ 4. Semi.concavity of the solution u(¢,x). Let’s 7 be a normal
of I, advancing from £, _ to 2, ,, and denote
ou/ox(t, xiO)z-lint ou/ox(t, x+eni) forxel,.

Then the semi-concavity property (3) is equivalent to the following
inequality ;
(7 {ou/dx(t, x +0)—ou/dx(t, x—0), %) <0 forxel,,
which is the entropy condition for a system of conservation law
obtained by letting 6u/dx=w be unknown functions. On the other
hand, as 7% advances from 2, _ to 2,,,, it follows

(d/ds)(u,(t, x+s) —u,(t, x+s7))|;-e>0  forxel,
which means that, when we write 7%= k(ou,/dx—ou,/dx)|,, k must be
non-negative. Therefore (7) is easily obtained. It’s already known
that a Lipschitz-continuous and semi-concave solution is unique. Hence
the solution constructed above is the reasonable one of (1) and (2).

§5. Collision of singularities. Let’s I, and I, be singularities
constructed as above. We use notations of Fig. 2. A collision of type
(i) doesn’t appear. In the case (ii), the solution becomes two-valued
on a domain bounded by I, and I',, By the similar discussion as in
§ 3, we can uniquely pick up a one-valued continuous solution there.
Its new singularity is written by a dotted curve in (ii) of Fig. 2.
There is no problem for the case (iii).

r, Iy r,

I

(0} (i) (iii)
Fig. 2
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