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1. Introduction. This note is concerned with the singularities
of global solution of Hamilton-Jacobi equation in two space dimensions

(1) u +f(u)=0 in {t0, xeR}

( 2 ) u(0, x) =(x) e C(R),
where C(R) is a set of C-functions whose supports are compact. In
this note we assume that f is C and uniformly convex. It’s well
known that, even for smooth initial data, the Cauchy problem (1) and
(2) doesn’t admit a smooth solution for all t. Therefore we consider
a generalized solution of (1), (2) whose definition, will be given, in. 2.
The existence of global generalized solutions is already established by
many authors. (See [1] and its references.)

For a single conservation law in one space dimension, a solution
satisfying the entropy condition is piecewise smooth or any smooth
initial data in SZ={rapidly decreasing functions} except or a subset
o.f the first category ([3]-[5] and [8]). T. Debeneix [2] treated certain
systems o. conservation law which is essentially equivalent to
Hamilton-Jacobi equatio.n (1) in. R (n<4), and generalized the results
of [8] to this case by the same method as [8].

One o.i the classical methods for solving first order non-linear
equations is the characteristic one. Its weak point is that it’s the
local theory. The reason is due to, the fact that a smooth mapping
can’t uniquely have the inverse at a point where its jacobian vanishes,
i.e., that its inverse becomes many-valued there. Therefore the solu-
tion takes also. many values in a neighborhood of critical points of a
mapping Ht defined in 3. The aim of this note is to show how to
choose up the reasonable value o.f its many values so that the solution
is one-valued and co.ntinuous.

The author thanks Dr. A. Grigis for a number o. helpful discus-
sion on this problem during his stay at l’Ecole Polytechnique and
l’Universit de Paris-Sud.

2. Generalized solutions. Let’s put p=(p, p) e R, and write

f’(p)=(p(p),-p(p)) and f"(p)=[-Of-(p)]
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In. this note we assume that f(p) is uniformly convex, i.e., f"(p)>C)O
where C is co.nstant. We now define a generalized solution of (1) and
(2).

Definition. A Lipschitz c3.ntinuous function u(t,x) defined on
RXR is called a generalized solution of (1) and (2) if
i) u(t, x) satisfies (1) almost everywhere in R R and (2) on t-O,

ii) u(t, x) is semi-co.ncave, i.e., there exists a co,nstant k)0 such that
( 3 ) u(t, x+y)+u(t, x--y)--2u(t, x)<klYl

for any x, y e R and t0.
It’s well known that the Cauchy problem (1) and (2) has a unique

global solution with the above properties i) and ii) ([6], [1]).
:. Construction of solutions. The characteristic lines corre-

spending to the Cauchy problem (1) and (2) are determined by follow-
ing equations"

2=3f/3p(p), b=0 (i=1,2)
with the initial co.nditions

x(0)-y, p(O)--3/fy(y) (i=1,2).
On the characteristic line, the value v(t, y) o.f the solution sa,tisfies a.n
equation

i) f(p)+ (p, if(p)}, v(0) =(y),
where (p, q} means a scala.r product o.f vectors p and q. Solving
these equa.tions, we ha.ve

t H( 4 ) x--y+ f (? (y)). t(y),

( 5 ) v--(y)+ t{--f(’(y))+ (’(y), f’(9’(y)))}.
Then H is a. smooth ma.pping from R to. Rx, and its jacobian is

given by
ax/3y(t, y)-det (I+ tf"(?’(y))"(y)).

Let’s write A(y)=f"(’(y))"(y) and 2(y)<2(y) be eigenvalues
A(y). Assume min2(y)-2(yo)=--MO a.nd put to--1/M. Then,
since 3x/3y (t, y)=/=O or a.ny tto and y e R, we can uniquely solve (4)
with respect to y and denote it by y=y(t, x). We see u(t, x)
=v(t, y(t, x)) is the smooth solution o.f (1) and (2) for t to. Our prob-
lem is to construct the solution o.r t to.

Suppose that t-to is positive a.nd sufficiently small. The jacobian
o. Ht vanishes on X={y e R; l+t2(y)=0}. Assume the condition

(A.1) 2(y) e C, grad 2(y)4=0 on Xt, and Xt is a simple closed
curve.

In this case, X is parametrized as X={(y,(s), y.(s));s e I} where
I is an interval and y(s)e C(I) (i-l, 2). Put

X= {y(So) e X -v(t, y(s))=0 at s=s0}.
By the definition of Whitney [10], a point Y in X-X is a. old point
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o.f the mapping H, i.e.,
(d/ ds)x(t, y(s)) :/:0 a.t y- Y.

Lemma 1. Suppose Y e X. If a number of elements of X is two
or v/y:/:O at y=Y, then it follows

d x(t, y(s))=(I+tA(y))-s=O at y=Y.
ds

Assume here the following condition"
(A.2) X=[Y, Y} and Y (i=1,2) are cusp points of H, i.e.,

y(s)) :/:0 at y Y (i= 1, 2).
---s-X(t,

When we denote the restriction, of v(t, y) on X by v(t, y), the
function v takes its extremums on X. Especially, if we put v(t, Y)
c (i= 1, 2) a.nd suppose c c, vz takes its minimum a.t y Y and

maximum at y= Y. Denote by D the interior of the curve X and by
tgt the interior of H(X). Then the curve v(t, y)=c is tangent to. Dt
at y=Y (i=1,2). Moreover, when we put H(Y)=X (i=1,2), the
curve Ht(Xt)has the cusps at x=X, and X. See Fig. 1. When we
solve the equation (4) with respect to y or any x e 9, the solution
y--y(t, x) becomes three-valued. Write these values by g(t, x), g(t, x)
and g(t, x) where g(t, x) is in D for any x e 9. Then the solution
u(t, x)=v(t, y(t, x)) also is three-valued on 9, i.e., when one puts u(t, x)
=v(t, g(t, x)) (i= 1, 2, 3), the solution takes the values u(t, x), u(t, x)
and u(t, x) o.n 9. Next, pick up any number c e (c, c), and consider
the image of the curve {y e R; v(t, y)=c} by H. Then its image
intersects itself only at one point in 9 (see Fig. 1).

(t, )=c

,/
(t, y) c H,(v(t, y) c)

Fig. 1

Using these acts, we obtain the ollowing

Lemma 2. i) u(t, x) u(t, x) and u(t, x) u.(t, x) for any x e 2t,
ii) The set I"={x e 9 u(t, x)=u(t, x)} determines a smooth curve
combining the points X, and X.

The dotted curve in Fig. 1 means H;(F). For the proofs of these
properties, it’s necessary to. see the behavior o the inverse ma.pping
H; in a neighborhood o.f 9t. With respect to. this problem, we use
the famous results o.f Whitney [10]. Since we are looking or a con-
tinuo.us and one-valued solution, we define the slution
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( 6 ) u(t, x)= u(t, x) in 9, /--{x e 9 u(t, x)--u(t, x)>0},
[u(t, x) in 9,_--[x e 9 u(t, x)--u(t, x)0}.

4. Semi.concavity of the solution u(t, x). Let’s be a normal
of F advancing from 9,_ to. 9,/, and denote

3u/3x(t, x_+0)=lim 3u/3x(t, x+_e) for x e F.
-*+0

Then the semi-concavity property (3) is equivalent to the following
inequality
(7) (3u/3x(t, x +O)--3u/3x(t, x-O),} <O for x e F,
which is the entropy condition for a system of conservation law
obtained by letting 3u/3x=w be unknown functions. On the other
hand, as advances from 9,_ to. 9, /, it follows

(d/ds)(u(t, x +s)-u(t, x+s))]=0> 0 for x e Ft,
which means that, when we write =k(3u/3x-3u,/3x)lr, k must be
non-negative. Therefore (7) is easily obtained. It’s already known
that a Lipschitz-continuous and semi-concave solution is unique. Hence
the solution constructed above is the reasonable one of (1) and (2).

5. Collision of singularities. Let’s F and F be singularities
constructed as above. We use notations o.f Fig. 2. A collision o.f type
(i) doesn’t appear. In the case (ii), the solution becomes two-valued
on a do.main bounded by F and F. By the similar discussion as in
3, we can uniquely pick up a o.ne-valued co.ntinuous solution there.

Its new singularity is written by a dotted curve in (ii) of Fig. 2.
There is no, problem for the case (iii).
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