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137. A Note on the Approximate Functional
Equation for 2(s). II

By Yoichi V[0TOHASHI
Department of Mathematics, College of’ Science

and Technology, Nihon University

(Communicated by Kunihiko KODAIRA, M. J. A., Dec. 12, 1983)

1. Continuing the investigation initiated in our preceding paper
[1] we show here the -analo.gue of the Riemann-Siegel formula, that
is, an asymptotic expansion o.f (s)in the critical strip" Using the
notations introduced in [1] we have

Theorem. For 0 a( 1 and t :> 1,
Z(1-s) D(s, t/2n)=(t/2n) -1/4 d(n)n-1/ sin (2/2ntn + z/4)ho(n)

-(t /2)-/, d(n)n-/ cos (2/2znt-F zl4)ho(n)

4
a (t/2)- d(n) cos (2/2nt+ zl4)h(n)

----(t / 2)-/4, d(n)n/ cos (2/-t-14)h.(n)+O(llt),

where is the Euler constant, and

h(n)-- cs (+ (-1)z/4) d.
(+n)

Remark. At the cost o much more labour we may well replace
the error O(1/t) by a further approximation, but it seems that the
above is sufficiently sharp or most applications.

2. The proo of our theorem which will appear elsewhere is, as
may be expected, rather involved. So, in order to describe the main
ideas, we show here briefly how to determine the first approximation,
i.e.
( 1 ) (1--s)D(s, t/2)

(t / 2)-/ d(n)n-/ sin (2J2=tn+ /4)h0(n)+ O(t-/ log t).

Now, invoking the higher order approximatio.ns or (s) (or rather
E(s, x) (see [1])) which can be obtained by the Riemann-Siegel method,
we see readily that the procedure developed in [1] yields, in act,

1 1(2) Z(1-s) m-E(s, t/2m)=
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..t_____1 ,, 1 j’[ e_<,,is= sin d
2 m<tll.),li m sin (/2)

+O(t-/ log t),
where =e"/ and 0(x)=x--[x]-l/2. We denote this integral by I.
Then we have, by Melli’s formula,

1 I: sin(O(t/2m)/) I ( t )I= 2i
d

(<w):l)
F (w) ..8m dw.

For a while let us assume that t/2zm is not an integer, so that
i0(t/2zm)i 1/2. Because of the absolute convergence of the double
integral, we may change the order of integrations. Then we replace
the line of the 2-integration by the contour C which starts at infinity
on the positive real axis, encircles the origin once in the negative
direction, excluding poles, and returns to the infinity. Further we
shift the line of the w-integration to Re(w)=5/4. In this way we get

i=2zm0(t/2m)(t/2)_l+ 1 F(w)
2i (,(w):l) 1-exp (-4iw)

(t)- I sin (O (t/ 2m)/D d"
8um(

dw c-w sin (]/2D
Next, we expand C appropriately, and find

I 2um0(t/2urn)(t /2)-

(,(w)=/) cos (uw) F(w)(t/2m)-= n- sin (tn/m)dw.

At this stage we may drop the restriction on t/2zm introduced above.
Inserting this into (2) we get

(1-s) m-E(s,t/2zm)
m_(tl)ll

(3) _1__ E 1 + 1(tl2)_,/ E

where

say.

1 e+- ((w)=/) cos (w)

8(t/2m)

F(w)(t/2)-Y(w, t)dw+O(t-/ log t),

Y(w, t)= , n- , m-’ sin (tn/m)
n=l m_(t/2)ll

n-WSn(w, t),

Thus our problem is now reduced to the asymptotic evaluation
of each S(w, t).

Now, by virtue of the condition Re(w)=5/4, we have, by Poisso.n’s
summation formula,

( t )-WSn(W t)"--’i x2W-1 sin (n/ 2t Ix)dx

+2 x- cos (]/2t x) sin (n/2t /x)dx.
1o.
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The first integral can be estimated easily. To the other integrals we
apply the saddle point method with a special care for the end point
x--l, and we see that, using the convention 0/0-0,

f: x- cos (]/2t x)sin (n/2t/x)dx

/-4 (1+ sgn (j--n)) -]- (2tjn)/

+ cos ((n--])/2t ) --]sgn (i--n) cos ((]+n)/2t
2(n+)/2t 2(n--])/2ut

w(1 --[sgn (]-- n)1) cos (2n/2t )
2n/2zt

+O(e’’/(1 (n /])](t]n)-/+]sgn (]-- n)]n(n-- ])-t-)},
whence

(4) Y(w, t)= 1 ( t d(n)n-(//) sin (2/2=tn+ =/4)

+ O(e’’/l t-/
Hence, on noting that

F, a(x /n) (x) a(x) +-+O(x-
2

where
1z(x) _’ d(n)- x(log x+2’-- 1)- -,

we get, from (3) and (4),
Z(1-s) m-E(s, t/2m)

m<(tl2)l/

1__ 1 (t/2r)_l/2zl(t/27r)
2 m$(t/2g)x/ on 2e, d(n)n- /’ sin (2/2tn+/4)
4/- - ;

(,(w)=/,) cos (w)
F(w)(n)-dw+ O(t-/z log t).

Now, in the last integral we shift the line of integration to Re(w)
=1/4, and we note that the infinite sum arising from the residue of
the pole at w=1/2 cancels with the part of --(2e)-(t/2)-/z(t/2)
which comes from the first term in Voronoi’s ormula for A(t/2=).
Hence we get

1 1z(1-s) m-’E(s, t/2.m)
m(t/2z)/u 2 m(t/2r)/ m

4:
d(n)n- /’ sin (2/2tn+u/4)

elw12

(.(w)/) cos (w)
F(w)(n)-dw+O(t-/ log t).
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Finally we note that, for x0,

(,()--/) cos (w)
F(w)x’dw 2/ (-+- x)-’/e(+/)d

which can be proved by constructing a differential equation satisfied
by the left side. Inserting these into (5) of [1] we conclude the proof
of (1).
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