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113. Construction of Certain Real Quadratic Fields

By Tsuyoshi UEHARA
Department of Mathematics, Saga University

(Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1983)

Let n be a given natural number. In this note we shall construct
real quadratic fields whose fundamental units are congruent to +1
modulo n. We also give a new proof of the existence of infinitely
many real quadratic fields each with class number divisible by # (cf.
Weinberger [3], Yamamoto [4]).

Let Z, Q be the ring of rational integers, the field of rational
numbers respectively. For a rational integer m+0 and a prime p we
denote by ord, m the greatest nonnegative rational integer f such that
m=0 (mod p’).

Lemma. Let o, § be integers of a quadratic field K such that
a=+p" for somen>1inZ. Wewritea=(a+bv d)/2, f=(s+tv/ d)/2
with a, b, s, t in Z, where d is the discriminant of K. If p is a prime
dividing d such that ord, a=ord, 2, then we have

ord, t=ord, b—ord, n
except in the following two cases: (i) p=2, ord,d=2 and n=0 (mod 2),
(ii) p=3, d=6 (mod 9) and n=0 (mod 3).
Proof. First assume that ord, d=ord, (4p). Then ord,a=ord,2

implies ord, s=ord,2. If 5<k<n, we have ord, (Z )gord,, n—ord, k

=ord,n+1—k/2. Hence
b=+nt(s/2)"*{(s/2)+ (n—1)(n —2)t*d [ 24} (mod p**Y)

with g=ord, (nt). Thus ord, b=g holds except in the case (ii). Next
let p=2, ord,d=2 and (#,2)=1. Then =0 or 1 (mod 2) according
as s/2=t or t+1 (mod 2). Since ord; a=1, a=p (mod 2) and s/2=t+1
=1 (mod2). Hence b=+nt(s/2)""! (mod 2t). Thus the lemma follows.

Theorem. Let n be a given natural number and let k>1 be a
square free rational integer such that k=0 (mod p) for any prime p
dividing n. We put

e=kn’+2+nvm)/2 with m=k(kn*+4),

and assume that kn*+4+c*, 2¢® for any ¢ in Z and that m=38 (mod 9)
if 8 divides n. Then ¢>1 is the fundamental unit of K=Q(v/m).

Proof. It is easy to see that ¢>1is a unit of K withnorm 1. We
write krn*+4=c*u with ¢ in Z and a square free rational integer «>0.
From the assumption we have #=8. Since (u,k)=1 or 2, the dis-
criminant d of K is ku if » is odd, and is 4ku if » is even. Note that
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d=3 (mod 9) if 3 divides n.

Now suppose that e=y? for some unit y=(s+tv d)/2 with s, ¢ in
Z and for some prime p. When p is odd, one sees s>¢v d >0 and so
kn*+2>(t4/ d)*. On the other hand, applying Lemma to ¢, 7 and the
primes dividing n, we get t=0 (mod n) if (n, p)=1 and {=0 (mod n/p)
if n=0 (mod p). In the case n=0 (mod p), using kn’>=p* we have

(v d )P = (En?PPurp=? > kn*(uPp?-*)"*>2kns.
Here notice that =5 if 3 divides n. It is obvious that (¢v/ d)?>kn*u
if (n, p)=1. Thus in both the cases we obtain (¢tv/ d )?>kn*+2, which
is contrary to the above. When p=2, we derive from Lemma that
t?*d=0 (mod kn*u) and s*t*d>(t*d—1)t*d>n*m. This is a contradiction.
Thus the proof is complete.

Our result is similar to that of Morikawa [1]. A part of the units
described as in Theorem have been considered in our previous paper
[2] to find imaginary abelian fields whose relative class numbers are
divisible by a given odd prime.

Proposition. Let n’ be a natural number and put n=n'if v’ is
odd and n=2n’ if n’ is even. For a rational integer ¢>1 and a divisor
e>0 of q"—1 we assume that (i) ord, e is odd for every odd prime p
dividing q"—1, (ii) ord, e=1 for every odd prime p dividing n, (ii)
e=2, 3 (mod4) or e=4 (mod 16), (iv) e=6 (mod 9) if 3 divides n,
) 2e—1, 9)=1, and (vi) f=(q"—1)/4e is a natural number satisfying
f=0 (mod p) for every prime p dividing 2n. Then the class number
MK) of the real quadratic field K=Q(ym) is divisible by n’ and any
prime dividing q"—1 is ramified in K, where

m={1—-2e+(q¢"—1)/2)—q".

Proof. We compute m=4e{e(f —1)*—1} and write m =c*d, where
¢, d are natural numbers and d is square free. Then d=2 (mod 4) if
e=2, 3 (mod 4) and d=3 (mod 4) if e=4 (mod 16). Hence the dis-
criminant of K is 4d. From (i) we see that d is divisible by every odd
prime dividing ¢"—1. Thus the second assertion follows. Note that
4d=m=3 (mod 9) if 3 divides .

We define a=2e¢f(f—1)—1 and b=2e(f—1)+1. One sees by
simple calculation that

n=(a+1y/) [ (b— /i) =2e(f 1) —1+(f —1)y/m
is a unit of K and b*—m=q". From (v) we have (b,q)=1. This
implies that (¢ +fyv/m)=(b—/m)=I" for some ideal I in K.

We now suppose that #(K) is not divisible by p* with k=ord, n’
for some prime p dividing »’. Then a+fy/m =p*¢ holds with a unit
¢ and an integer § of K, where p’=p if p>2 and p’=4 if p=2. We
denote by e=x+y+ d >1 the fundamental unit of K with z, y in Z.
Then yp=¢', {=¢’ for some ¢, 1>0. First assume that p is odd. Then
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(ii) and (vi) imply e=f=0 (mod p). Thus a+fy/m =-—1 (mod p) and
pP=v (mod p) for some v in Z, prime to p. So{=-—v (modp). We
derive from Lemma that if (4, p) =1 then y=0 (mod p). However
775—(1+C\/Ti) (mod p) and (¢, p)=1. Hence p divides 7. We can
write a+fym =(s+tv d)? with s, t in Z. Since a>fym >0, we see
s>ty d >0and 26>2tv/ d)?. From (i) any prime divisor of ef divides
d. Applying Lemma we get t*d=0 (mod 4ef*/p*). Because ef*=p*
it follows that
2ty d)?=4re? > frp-? >4ef*>2a.

This is a contradiction. Next assume p=2. Let g=2 if d=2 (mod 4)
and g=3 if d=38 (mod4). By computation we can see that a*=1
(mod 2¢) for any integer « of K, prime to 2. Since ord,c=g9—1,
a+fym=¢=—1 (mod 2°. When (j,2)=1, by Lemma one has y=0
(mod 29). But pzv (mod 2°) for any » in Z. Hence ord, =1 and so
{=e*=-—1 (mod 2. The last congruence implies (3,2)=1. Using
Lemma again we get y=0 (mod 2). This shows &*z= —1 (mod 4), which
gives a contradiction. Consequently Z(K) is divisible by »’.

Let K, (i=1, -.-,8) be a finite number of quadratic fields. To
prove the theorem of Weinberger and Yamamoto, it suffices to find a
real quadratic field, different from any K,, with class number divisible
by a given natural number n’. Take a prime ! unramified in any K,
and a natural number » prime to 2n’. Let g be a prime such that ¢—1
is divisible by I, 7* and every odd prime dividing »’, and further by 32
if n’ is odd, by 8 if n’ is even. Let n be as in Proposition. Then
q"—1 is divisible by ! and by p* for any prime p dividing »’. Denote
by e, the product of all distinct primes dividing ¢"—1. If e,;£3 (mod
9), we put e,=e,. When ¢,=3 (mod 9), let e,=2¢, if ¢,=2 (mod 8) and
e,=¢,/2 if ¢,=6 (mod 8). Since (#*—1, q)=1, either 2¢,—1 or 2e,°—1
is prime to ¢. Thus putting e=e, or e,r? we get a divisor e of ¢"—1
satisfying from (i) to (vi). By means of Proposition we find a real
quadratic field K with #(K)=0 (mod #’) such that [ is ramified in K
and hence K=K, for any 7, 1<i<s.
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