113. Construction of Certain Real Quadratic Fields

By Tsuyoshi UEHARA
Department of Mathematics, Saga University

(Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1983)

Let n be a given natural number. In this note we shall construct real quadratic fields whose fundamental units are congruent to ± 1 modulo n. We also give a new proof of the existence of infinitely many real quadratic fields each with class number divisible by n (cf. Weinberger [3], Yamamoto [4]).

Let Z, Q be the ring of rational integers, the field of rational numbers respectively. For a rational integer $m \neq 0$ and a prime p we denote by ord, m the greatest nonnegative rational integer f such that $m \equiv 0 \pmod{p^f}$.

Lemma. Let α , β be integers of a quadratic field K such that $\alpha = \pm \beta^n$ for some n > 1 in Z. We write $\alpha = (a + b\sqrt{d})/2$, $\beta = (s + t\sqrt{d})/2$ with a, b, s, t in Z, where d is the discriminant of K. If p is a prime dividing d such that $\operatorname{ord}_n a = \operatorname{ord}_n 2$, then we have

$$\operatorname{ord}_{p} t = \operatorname{ord}_{p} b - \operatorname{ord}_{p} n$$

except in the following two cases: (i) p=2, $\operatorname{ord}_2 d=2$ and $n \equiv 0 \pmod 2$, (ii) p=3, $d \equiv 6 \pmod 9$ and $n \equiv 0 \pmod 3$.

Proof. First assume that $\operatorname{ord}_{p} d = \operatorname{ord}_{p} (4p)$. Then $\operatorname{ord}_{p} a = \operatorname{ord}_{p} 2$ implies $\operatorname{ord}_{p} s = \operatorname{ord}_{p} 2$. If $5 \leq k \leq n$, we have $\operatorname{ord}_{p} \binom{n}{k} \geq \operatorname{ord}_{p} n - \operatorname{ord}_{p} k \geq \operatorname{ord}_{p} n + 1 - k/2$. Hence

 $b \equiv \pm nt(s/2)^{n-3}\{(s/2)^2 + (n-1)(n-2)t^2d/24\}$ (mod p^{g+1}) with $g = \operatorname{ord}_p(nt)$. Thus $\operatorname{ord}_p b = g$ holds except in the case (ii). Next let p=2, $\operatorname{ord}_2 d=2$ and (n,2)=1. Then $\beta^2 \equiv 0$ or 1 (mod 2) according as $s/2 \equiv t$ or $t+1 \pmod 2$. Since $\operatorname{ord}_2 a=1$, $\alpha \equiv \beta \pmod 2$ and $s/2 \equiv t+1 \equiv 1 \pmod 2$. Hence $b \equiv \pm nt(s/2)^{n-1} \pmod 2t$. Thus the lemma follows.

Theorem. Let n be a given natural number and let k>1 be a square free rational integer such that $k\equiv 0 \pmod{p}$ for any prime p dividing n. We put

$$\varepsilon = (kn^2 \pm 2 + n\sqrt{m})/2$$
 with $m = k(kn^2 \pm 4)$,

and assume that $kn^2 \pm 4 \neq c^2$, $2c^2$ for any c in Z and that $m \equiv 3 \pmod{9}$ if 3 divides n. Then $\varepsilon > 1$ is the fundamental unit of $K = Q(\sqrt{m})$.

Proof. It is easy to see that $\varepsilon > 1$ is a unit of K with norm 1. We write $kn^2 \pm 4 = c^2u$ with c in Z and a square free rational integer u > 0. From the assumption we have $u \ge 3$. Since (u, k) = 1 or 2, the discriminant d of K is ku if n is odd, and is 4ku if n is even. Note that

 $d\equiv 3 \pmod{9}$ if 3 divides n.

Now suppose that $\varepsilon = \eta^p$ for some unit $\eta = (s + t\sqrt{d})/2$ with s, t in Z and for some prime p. When p is odd, one sees $s > t\sqrt{d} > 0$ and so $kn^2 \pm 2 > (t\sqrt{d})^p$. On the other hand, applying Lemma to ε , η and the primes dividing n, we get $t \equiv 0 \pmod{n}$ if (n, p) = 1 and $t \equiv 0 \pmod{n/p}$ if $n \equiv 0 \pmod{p}$. In the case $n \equiv 0 \pmod{p}$, using $kn^2 \ge p^3$ we have

$$(t\sqrt{d})^p \ge (kn^2)^{p/2}u^{p/2}p^{-p} \ge kn^2(u^pp^{p-\theta})^{1/2} > 2kn^2.$$

Here notice that $u \ge 5$ if 3 divides n. It is obvious that $(t\sqrt{d})^p > kn^2u$ if (n,p)=1. Thus in both the cases we obtain $(t\sqrt{d})^p > kn^2 \pm 2$, which is contrary to the above. When p=2, we derive from Lemma that $t^2d \equiv 0 \pmod{kn^2u}$ and $s^2t^2d \ge (t^2d-1)t^2d > n^2m$. This is a contradiction. Thus the proof is complete.

Our result is similar to that of Morikawa [1]. A part of the units described as in Theorem have been considered in our previous paper [2] to find imaginary abelian fields whose relative class numbers are divisible by a given odd prime.

Proposition. Let n' be a natural number and put n=n' if n' is odd and n=2n' if n' is even. For a rational integer q>1 and a divisor e>0 of q^n-1 we assume that (i) $\operatorname{ord}_p e$ is odd for every odd prime p dividing q^n-1 , (ii) $\operatorname{ord}_p e=1$ for every odd prime p dividing n, (iii) $e\equiv 2$, $3\pmod 4$ or $e\equiv 4\pmod {16}$, (iv) $e\equiv 6\pmod 9$ if 3 divides n, (v) (2e-1,q)=1, and (vi) $f=(q^n-1)/4e$ is a natural number satisfying $f\equiv 0\pmod p$ for every prime p dividing 2n. Then the class number h(K) of the real quadratic field $K=Q(\sqrt{m})$ is divisible by n' and any prime dividing q^n-1 is ramified in K, where

$$m = \{1-2e+(q^n-1)/2\}^2-q^n$$
.

Proof. We compute $m=4e\{e(f-1)^2-1\}$ and write $m=c^2d$, where c, d are natural numbers and d is square free. Then $d\equiv 2\pmod 4$ if $e\equiv 2$, $3\pmod 4$ and $d\equiv 3\pmod 4$ if $e\equiv 4\pmod {16}$. Hence the discriminant of K is 4d. From (i) we see that d is divisible by every odd prime dividing q^n-1 . Thus the second assertion follows. Note that $4d\equiv m\equiv 3\pmod 9$ if 3 divides n.

We define a=2ef(f-1)-1 and b=2e(f-1)+1. One sees by simple calculation that

$$\eta=(a+f\sqrt{m})/(b-\sqrt{m})=2e(f-1)^2-1+(f-1)\sqrt{m}$$
 is a unit of K and $b^2-m=q^n$. From (v) we have $(b,q)=1$. This implies that $(a+f\sqrt{m})=(b-\sqrt{m})=I^n$ for some ideal I in K .

We now suppose that h(K) is not divisible by p^k with $k = \operatorname{ord}_p n'$ for some prime p dividing n'. Then $a + f\sqrt{m} = \beta^{p'}\zeta$ holds with a unit ζ and an integer β of K, where p' = p if p > 2 and p' = 4 if p = 2. We denote by $\varepsilon = x + y\sqrt{d} > 1$ the fundamental unit of K with x, y in X. Then $\eta = \varepsilon^i$, $\zeta = \varepsilon^j$ for some i, j > 0. First assume that p is odd. Then

(ii) and (vi) imply $e \equiv f \equiv 0 \pmod p$. Thus $a+f\sqrt{m} \equiv -1 \pmod p$ and $\beta^p \equiv v \pmod p$ for some v in Z, prime to p. So $\zeta \equiv -v \pmod p$. We derive from Lemma that if (j,p)=1 then $y \equiv 0 \pmod p$. However $\eta \equiv -(1+c\sqrt{d}) \pmod p$ and (c,p)=1. Hence p divides j. We can write $a+f\sqrt{m}=(s+t\sqrt{d})^p$ with s, t in Z. Since $a>f\sqrt{m}>0$, we see $s>t\sqrt{d}>0$ and $2a>(2t\sqrt{d})^p$. From (i) any prime divisor of ef divides d. Applying Lemma we get $t^2d\equiv 0 \pmod {4ef^2/p^2}$. Because $ef^2 \ge p^3$ it follows that

$$(2t\sqrt{d})^p \ge 4^p e^{p/2} f^p p^{-p} > 4ef^2 > 2a.$$

This is a contradiction. Next assume p=2. Let g=2 if $d\equiv 2 \pmod 4$ and g=3 if $d\equiv 3 \pmod 4$. By computation we can see that $\alpha^i\equiv 1 \pmod {2^o}$ for any integer α of K, prime to 2. Since $\operatorname{ord}_2 c=g-1$, $a+f\sqrt{m}\equiv \zeta\equiv -1 \pmod {2^o}$. When (j,2)=1, by Lemma one has $y\equiv 0 \pmod {2^o}$. But $\eta\not\equiv v \pmod {2^o}$ for any v in Z. Hence $\operatorname{ord}_2 j=1$ and so $\zeta\equiv \varepsilon^2\equiv -1 \pmod {2^o}$. The last congruence implies (i,2)=1. Using Lemma again we get $y\equiv 0 \pmod 2$. This shows $\varepsilon^2\not\equiv -1 \pmod 4$, which gives a contradiction. Consequently h(K) is divisible by n'.

Let K_i $(i=1, \dots, s)$ be a finite number of quadratic fields. To prove the theorem of Weinberger and Yamamoto, it suffices to find a real quadratic field, different from any K_i , with class number divisible by a given natural number n'. Take a prime l unramified in any K_i and a natural number r prime to 2n'. Let q be a prime such that q-1 is divisible by l, r^3 and every odd prime dividing n', and further by 32 if n' is odd, by 8 if n' is even. Let n be as in Proposition. Then q^n-1 is divisible by l and by p^2 for any prime p dividing n'. Denote by e_1 the product of all distinct primes dividing q^n-1 . If $e_1\not\equiv 3$ (mod 9), we put $e_2=e_1$. When $e_1\equiv 3$ (mod 9), let $e_2=2e_1$ if $e_1\equiv 2$ (mod 8) and $e_2=e_1/2$ if $e_1\equiv 6$ (mod 8). Since $(r^2-1,q)=1$, either $2e_2-1$ or $2e_2r^2-1$ is prime to q. Thus putting $e=e_2$ or e_2r^2 we get a divisor e of q^n-1 satisfying from (i) to (vi). By means of Proposition we find a real quadratic field K with $h(K)\equiv 0$ (mod n') such that l is ramified in K and hence $K\neq K_t$ for any i, $1\leq i\leq s$.

References

- [1] R. Morikawa: On units of real quadratic number fields. J. Math. Soc. Japan, 31, 245-250 (1979).
- [2] T. Uehara: On some congruences for generalized Bernoulli numbers. Rep. Fac. Sci. Engrg. Saga Univ. Math., 10, 1-8 (1982).
- [3] P. J. Weinberger: Real quadratic fields with class numbers divisible by n. J. Number Theory, 5, 237-241 (1973).
- [4] Y. Yamamoto: On unramified Galois extensions of quadratic number fields. Osaka J. Math., 7, 57-76 (1970).