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77. Three Commodity Flows in Graphs

By Haruko OKAMURA
Faculty of Engineering, Osaka City University, Osaka

(Communicated by Shokichi IYANAGA, M. J. A., June 14, 1983)

Let G=(V, E) be a graph (finite undirected, possibly with multiple
edges but without loops). In this paper a path has no repeated edges,
and we permit the path with one vertex and no edges. For two dis-
tinct vertices x, y we let A(x, ¥)=2,(x, ¥) be the maximal number of
edge-disjoint paths between x and ¥, and we let A(z, )= oo,

We first consider the following problem.

Let (sy, t), - - -, (8 t) be pairs (not necessarily distinct) of vertices
of G. When is the following true?

(1.1) There exist edge-disjoint paths P,, - - ., P, such that P, has
ends s, t, 1<i<k).

Seymour [9] and Thomassen [11] answered to this problem when
k=2, and Seymour [9] when s,, - -, 8;, &, - -, £, take only three dis-
tinct values.

Our result is the following

Theorem 1. Suppose that s, s,, S, t,, t,, t, are vertices of a graph
G. If for each i=1, 2,3 A(s, t;)>3, then there exist edge-disjoint
paths P,, P,, P, of G, such that P, has ends s, and t, (i=1, 2, 3).

If A(s,, t,)<2 for some 1, then this conclusion does not hold. Fig.
1 gives a counterexample.
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Fig. 1
For a positive integer k, we let g(k) be the smallest integer such
that for every g(k)-edge-connected graph and for every verticess,, - - -,
Sy, t1y - -+, t;, of the graph, (1.1) holds. Thomassen [11] conjectured
the following.
Conjecture (Thomassen). For each odd integer k>1, g(k)=Ek,
and for each even integer k>2, g(k)=Fk+1.
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If & is even then g(k) >k (see [11]). It follows easily from
Menger’s theorem that g(k)<2k—1, thus g(1)=1, 9(2)=3; and Cypher
[1] proved g(4)<6 and g(5)<7. Asa corollary of Theorem 1 we have
the following.

Corollary. g(3)=3.

The second problem we consider is the multicommodity flow
problem.

Suppose that each edge ¢ ¢ E has a real-valued capacity w(e)>0,
and each path has a positive value. We assume that w=1 and each
path has value 1 when there is no explanation. For a positive number
a, path aP, P denote paths of value «, 1 respectively. We say that a
set of paths o, P,, - - -, a,P, is feasible if for each edge ec E,

a,<w(e),
i€ {il€€E (P}

where E(P,) is the set of edges of P,.

For two vertices z, ¥ and a real number ¢>0, a flow F' of value ¢
between x and y is a set of paths o P,, - - -, a, P, between « and y such
that a,+. .- 4+a,=¢q. When «,, -, a, are all integers (half-integers),
F is called an integer (half-integer) flow. We say that a set of flows
F, ..., F, is feagible if the set of paths of F,, - . -, F'; is feasible.

Now the multicommodity flow problem is formulated as follows.

Let (s, t), - - -, (8, tx) be pairs of vertices of G, as before, and
suppose that ¢,>0 (1<i<k) are real-valued demands. When is the
following true?

(1.2) There exist feasible flows F,, - - -, F';, such that F, has ends
s, and ¢, and value q, 1<i<k).

Remark. When k=3, w=1, and ¢,=1 (1<¢<38), Theorem 1 im-
plies that (1.2) is true if A(s,, t)>3 (1<1<3), and then the flows may
be chosen as integer flows.

For a set XSV, we let 9(X)=0,X)ZE be the set of edges with
one end in X and the other in V—X, and we let D(X)={1,2, - - -, k} be
{t11<i<k, XN {s, t}#g=V—-X)N{s, t.}}.

It is clear that if (1.2) is true, then the following holds.

(1.3) For each XCV,

2 we= > .
1€D(X)

ecd(X)

Note tha't Zeeam ’M)(e)=la(X), lf 'w'E]-, and ZteD(X) qi:]D(X)l if qi:l
for any 1.

Our second result is the following

Theorem 2. Suppose that G is a graph and w is integer-valued,
and that k=38, ¢,=q,=q,=1. Then (1.2) and (1.3) are equivalent.

Moreover if (1.8) holds, then the flows F', in (1.2) may be chosen
as half-integer flows.

(1.4) In general (1.2) and (1.8) are not equivalent, but in the
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following cases they are equivalent.

(1.4.1) k=1 (Ford and Fulkerson [2]).

(1.4.2) k=2 (Hu [3] and Seymour [7]).

1.4.3) k=5, t;=s,,, (1=1,2, 3, 4) and t,=s, (Papernov [6]).

(1.4.4) k=6, and the (s, t,) correspond to the six pairs of a set
of four vertices (Seymour [8] and Papernov [6]).

1.4.5) s=s,=-..=s, and s,,,=.--=8, (obvious extension of
1.4.2)).

(1.4.6) The graph (V,EU{e,, - --, e,}) is planar, where the edge
¢, has ends s, and ¢, (1<i<k) (Seymour [10]).

(1.4.7) G is planar and can be drawn in the plane so that s,, - - -,
Sy tiy - -+, are all on the boundary of the infinite face (Okamura
and Seymour [4]).

(1.4.8) G is planar and can be drawn in the plane so that s,, - - -,
8y, by, - -+, t; are all on the boundary of a faceand s, + -, S 5.1, = - +»
t, are all on the boundary of the infinite face (Okamura [5]).

(1.4.9) G isplanar and can be drawn in the plane so thats,,,, - - -,
84 iy Loy - -+, t, are all on the boundary of the infinite face, and ¢,=- - -
=t, (Okamura [5]).

Moreover if (1.3) and the following (1.5) hold in each case except
(1.4.3), or if (1.3) holds and w, q, are even-integer-valued in the case
(1.4.8), then the flows F', of (1.2) may be chosen as integer flows.

(1.5) w and q, are integer-valued, and for each vertex x eV,

> we)— > q,
i€ D(x)

e€ca(x)
is even.

(1.4.1)-(1.4.5) are all configurations of (s, t,) for which (1.2) and
(1.3) are equivalent for all graphs G and all w, ¢, (see [8])). When
q,>0 (1<i<3), the case of Theorem 2 is the only case for which (1.2)
and (1.3) are equivalent for all graphs G and all w, (s, t). Fig.1
gives a counterexample with ¢,=2, ¢,=¢,=1.

The detailed proofs of the theorems will be published elsewhere.
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