
266 Proc. Japan Acad., 59, Ser. A (1983) [Vol. 59 (A),

77. Three Commodity Flows in Graphs
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(Communicated by Shokichi IYANA(A, M.$.A., June 14, 1983)

Let G= (V, E) be a graph (finite undirected, possibly with multiple
edges, but without loops). In this paper a path has no repeated edges,
and we permit the path with one vertex and no edges. For two dis-
tinct vertices x, y we let (x, y)--(x, y) be the maximal number of
edge-disjoint paths between x a.nd y, and we let ](x, x)---c.

We first consider the following problem.
Let (s, t), ..., (s, t) be pairs (not necessarily distinct) of vertices

of G. When is the following true?
(1.1) There exist edge-disjoint paths P, ..., P such that P, has

ends s, t (1_i_/).
Seymour [9] and Thomassen [11] answered to .this problem when

k--2, and Seymour [9] when s,..., s, t,..., t take only three dis-
tinct values.

Our result is the following
Theorem 1. Suppose that sl, s2, ss, tl, t2, t8 are vertices of a graph

G. If for each i--1, 2, 3 (s,, t,)_3, then there exist edge-disjoint
paths P, P2, P of G, such that P, has ends s, and , (i--1, 2, 3).

If (s,, t,)_2 for some i, then this conclusion does not hold. Fig.
1 gives a counterexample.

Fig. 1

For a positive integer k, we let g(t) be the smallest integer such
that for every g(k)-edge-connected graph and for every vertices s,, .,
s, t,..., t of the graph, (1.1)holds,. Thomassen [11] conjectured
the following.

Conjecture (Thomassen). For each odd integer k _l, g(k)=k,
and for each even integer k_2, g(k)-- k+ 1.
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If k is even then g(k)k (see [11]). It follows easily from
Menger’s theorem that g(/c)_2k-1, thus g(1)--1, g(2)-3 and Cypher
[1] proved g(4)_6 and g(5)_7. As a corollary of Theorem 1 we have
the following.

Corollary. g(3) =3.
The second problem we consider is the multicommodity flow

problem.
Suppose that each edge e e E has a real-valued capacity w(e)_O,

and each path has a positive value. We assume that w--1 and each
path has, value I when there is no explanation. For a positive number
a, path aP, P denote paths, of value a, 1 respectively. We say that a
set of paths, aP, .., aP is. feasible if for each edge e e E,

iileE(Pl)}

where E(P) is. the set of edges, of P.
For two vertices , y and a. real number q0, a flow F of value q

between x and y is a set of paths P, ...,P between x and y such
that . +-- q. When , ., are all integers (half-integers),
F is. called an integer (half-integer) flow. We say that a set of flows
F, ..., F is feasible if the set of paths of F, ..., F is feasible.

Now the mulicommodiy flow problem is formulated as follows.
Let (s, t,), ..., (s, t) be pairs of vertices of G, as before, and

suppose that q_0 (l_i_k) are real-valued demands. When is the
folio,wing true ?

(1.2) There exist feasible flows F, ..., F, such that F has ends

s and t and value q (1_i_ k).
Remark. When k--3, wl, and q--1 (1_i_3), Theorem 1 im-

plies that (1.2) is true if (s, t)_3 (1_i3), and then the flows may
be chosen as integer flows.

For a set XV, we let 3(X)-3(X)E be the set of edges with
one end in X and the other in V-X, and we let D(X){1, 2, ..., k} be

It is clear that if (1.2) is true, then the following holds.
(1.3) For each X_V,

w(e) q.
eB(X) iD(X)

Note that e0()w(e)=13(X)] if w--l, and e(z)q=]D(X)I if q=l
or any i.

Our second result is the following
Theorem 2. Suppose that G is a graph and w is integer-valued,

and that k=3, ql-q.=qs=l. Then (1.2) and (1.3) are equivalent.
Moreover if (1.3) holds, then the flows F in (1.2) may be chosen

as half-integer flows.
(1.4) In general (1.2) and (1.3) are not equivalent, but in the
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following cases they are equivalent.
(1.4.1) k=l (Ford and Fulkerson [2]).
(1.4.2) k=2 (Hu [3] and Seymour [7]).
(1.4.3) k 5, t s/ (i 1, 2, 3, 4) and t s (Papernov [6]).
(1.4.4) k=6, and the (s, t3 correspond to the six pairs of a set

of four vertices (Seymour [8] and Papernov [6]).
(1.4.5) s=s s and s/ s (obvious extension of

(1.4.2)).
(1.4.6) The graph (V, E[2{e,..., e}) is planar, where the edge

e has ends s and t (li_k) (Seymour [10]).
(1.4.7) G is planar and can be drawn in the plane so that s, ,..,

s, t,,..., t are all on the boundary of the infinite face (Okamura
and Seymour [4]).

(1.4.8) G is planar and can be drawn in the plane so that s, ...,
s, t, ., t are all on the boundary of a face and s/, ., s, t, .,
t are all on the boundary of the infinite face (Okamura [5]).

(1.4.9) G is planar and can be drawn in the plane so that s/, ...,
s, t, t, ..., t are all on the boundary of the infinite face, and t
t (Okamura [5]).
Moreover if (1.3) and the following (1.5) hold in each case except

(1.4.3), or if (1.3) holds and w, q are even-integer-valued in the case
(1.4.3), then the flows F of (1.2) may be chosen as integer flows.

(1.5) w and q are integer-valued, and for each vertex x e V,
E w(e)-- E q

ee (x) iD(x)

is even.
(1.4.1)-(1.4.5) are all configurations of (s, t3 for which (1.2) and

(1.3) are equivalent for all graphs G and all w, q (see [8]). When
q0 (1_<i_<3), the case of Theorem 2 is the only case for which (1.2)
and (1.3) are equivalent for all graphs G and all w, (s, t3. Fig. 1
gives a counterexample with q--2, q.--qs-1.

The detailed proofs of the theorems will be published elsewhere.
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