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1. Introduction. In quantum field theory, functional differ-
ential equations of special type, called Schwinger equations, appear.
Each Schwinger equation corresponds to a model of quantum fields in
a formal manner and it is regarded as an equation that contains all the
physics of the model in some way. For some examples of Schwinger
equations and related, non-rigorous, formal discussions, see, e.g.,
Rzewski [5].

So far, few rigorous mathematical analyses for Schwinger equa-
tions have been made (see, however, Gelfand [2]). Recently, Inoue [4]
constructed an explicit solution to a certain Schwinger equation of
the first order. Schwinger equations of the first order, however, are
not so difficult to handle and we can obtain a general form of solutions
to them [1]. In this short note, we report a result on the existence of
solution to a certain Schwinger equation of higher order.

2. Definitions. We first begin with a precise definition of func-
tional derivative. Let S(R™), n=1,2,3, ---, be the Schwartz space
of rapidly decreasing C= functions. For T e §'(R™) and fe S(R") we
define (T, f) e C by (T, NH=T(f).

Definition 2.1. Let Z=Z(f) be a complex-valued functional on
S(R™. If, at the point f in S(R™), there exists Z,(f) € S'(R™) such that
for all 2 in S(R™)

@.1) tim 20U+ =20) — pzayr)= (2.1, b,

§—0 15

then Z is said to be differentiable at the point f and Z,(f) is called the
functional derivative of Z at the point f; we shall denote its distri-
bution kernel by 6Z(f)/af (x):
_ 0Z(f)

2.2) DZ()() f dr S20 0.
If Z is differentiable at all points in S(R™), then it is said to be dif-
ferentiable on S(R™).

To define functional derivatives of higher order, we note that, if
Z is differentiable on S(R™), then DZ(k) is also a functional on S(R™)
for each fixed A.
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Definition 2.2. Let Z be a differentiable functional on S(R™). If
DZ(h) is differentiable on S(R™) for each & in S(R™) and its functional
derivative is continuous linear with respect to %, then Z is said to be
two times differentiable on S(R™).

If Z is two times differentiable on S(R™), then, by the Schwartz
nuclear theorem, there exists a unique Z,(f) € S’(R*") such that for all
hy, h, and f in S(R™)

(2.3) DDZ ) (h)()=(Z (), h.®hy)=(Z(f), h,®h,),
where h,&h, e S(R™) is defined Ly
2.9 (h,®h)(x, y) = hy(2)ho(¥), %, Y € R".

The continuous linear functional Z,(f) on S(R*™) is called the functional
derivative of the second order of Z at the point f; we shall denote its
distribution kernel by 6°Z(f)/df (x)df (y), which, by (2.8), is symmetric
with respect to # and y. In the same way we can define successively
the functional derivative of the m-th order of Z at each point in S(R")
as an element in §'(R™"); we shall denote its distribution kernel by
6"Z(f)[of (x,)- - -0f (), which is symmetric with respect to all permu-
tations of {1, .- -, m}.

In order to define Schwinger equations of higher order, we must
introduce a concept of re-ordering of functional derivatives:

Definition 2.3. Let Z=Z(f) be a m-times differentiable func-
tional on S(R™) and C(x, ¥) be a locally integrable symmetric function
on R*XR*. We define the re-ordered functional derivative of the
m-th order with respect to C=C(x, y)

57".
R"[ of @) of () ]Z(f )

by the following recursion relation :

@.5) Ro| fa(x) |z - gfg)) ,
R"[ af (@) 5m of (@) ]Z(f )
@6) - 5ffx1) R°[ af(xz)éfaf(xm) ]Z(f )
+, Olon 20Re| o (@) -5f(x:)ﬂt;;(wk+1)‘ L of () Jz
m=2,3, ---.

Let K(R™) be the set of functions p € C7(R"), satisfying
0<p, 0<p(0), fdxp(x)=1.

For p e K(R") and £>0 we define
(2.7 o(2)=k"p(k2),
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which tends to n-dimensional é-function in the distribution sense as
K—>00,

Definition 2.4. Let Z(f) and C(x, y) be as in Definition 2.3. We
define the distribution on R”

R[af( )m] %)
by

Bm
@.8) R[ e ]Z(f)—g@ da - - dmec[ R T T ]Z(f)

Xo(2—2)- - p(r—2,),
provided that the right hand side exists in the distribution sense inde-
pendently of any choices of p € K(R").
3. The equation and the result. The Schwinger equation we
consider is:

o OZ() _ . ‘-
BD (44T = [@Z()+ 5 (1R [af( )] )
with the subsidary condition

3.2) Z(0)=1.

Here 4 is the n-dimensional Laplacian and p>1 is an arbitrary fixed
number with ¢,>0, a,eR, k=1,2, ---, p—1. M>0 is a parameter.
We take C(z, ¥) equal to the integral kernel of the bounded self-adjoint
operator
3.3) C=(—A4+M»"!
on L*(R"). We seek a solution to Eq. (3.1) in the space of functionals
on S,(R"), the space generated by real functions in S(R*). The funec-
tional derivatives for functionals on S,(R®) are defined in the same
way as those for functionals on S(R™).

Our result is:

Theorem. Letn=1or2. Then, there exists a solution Z=2Z(f)
to Eq. (8.1) with (8.2), which is written as the characteristic func-
tional of a probability measure p on S,(R"):

(3.4) ZH=[  emduD), e S®.
7 (R™)
Further, Z has functional derivatives of all orders:
amZ(f) m T
3.5 = T(x,)- - - T(x,)e'""du(T),
B5) ety =0 Ly T T@ D

m=1,2, .--.

The proof, which is based on the methods and results of the
so-called constructive quantum field theory (see, e.g., Glimm and Jaffe
[3] and Simon [6]) and rather lengthy, will be given elsewhere.
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