17. A Calculus of the Gauss-Manin System of Type A_l. II

The Hamiltonian Representation

By Shinzo Ishiura*) and Masatoshi Noumi**)

(Communicated by Kôsaku Yosida, M. J. A., Feb. 12, 1982)

The present note is the later half of our article titled "A calculus of the Gauss-Manin system of type A_i ". We keep the notation and the terminology in our previous note [4].

3. The flat coordinate system. Now we return to the setting of no. 1 and work with the ring $R((x^{-1}))$, where $R = \mathbb{C}[s_2, s_3, \cdots]$. We define a new "coordinate system" (z_2, z_3, \cdots) for R in place of (s_2, s_3, \cdots) by the formula

(3.1)
$$x = f - \sum_{i=0}^{\infty} z_i f^{1-i}.$$

It is easy to see that z_2, z_3, \cdots are determined inductively as polynomials in s_2, s_3, \cdots and satisfy $\partial_{s_i}(z_i) = 1$ and $\partial_{s_j}(z_i) = 0$ for i < j. The sequence (z_2, z_3, \cdots) in R will be called the flat coordinates associated with (s_2, s_3, \cdots) .

Theorem 2 (Versality formula). The flat coordinate system (z_2, z_3, \cdots) is characterized by the formulae

(3.2)
$$\partial_{z_i}(f) = \partial_{x_i}(f) f^{1-j} \quad \text{for } j=2,3,\cdots.$$

Moreover we have

(3.3)
$$\partial_{z_i}(F_k) = ke_{k-j} \quad \text{for } j=2,3,\cdots.$$

For an indeterminate u, set $s(u) = \sum_{i=2}^{\infty} s_i u^i$ and $z(u) = \sum_{i=2}^{\infty} z_i u^i$. Then the coordinate transformations between the two coordinate systems are given by

(3.4)
$$z_j = \frac{1}{i-1} (1+s(u))_j^{j-1}$$
 for $j=2, 3, \cdots$

and

(3.5)
$$s_j = \frac{-1}{j-1} (1-z(u))_j^{j-1} \quad \text{for } j=2,3,\cdots.$$

An advantage of our formation of the flat coordinates lies in the following two theorems, which will play an essential role in no. 4.

Theorem 3 (Elimination of the variable x). In terms of the flat basis $(e_k)_{k\in\mathbb{N}}$ for R[x], the flat coordinates (z_1, z_2, \cdots) are represented by (3.6) $z_j = -(1+e(u))_j^{-1}$ for $j=2, 3, \cdots$, where $e(u) = \sum_{i=1}^{\infty} e_i u^i$.

Theorem 4. The sequence $(F_k)_{k\in\mathbb{N}}$ is represented by

^{*)} Department of Mathematics, Keio University.

^{**} Department of Mathematics, Sophia University.

(3.7)
$$F_k = k \log (1 + e(u))_k$$
 for $k = 1, 2, \dots$,

where $\log (1+e(u))_k$ stands for the coefficient of u^k in the Taylor expansion of $\log (1+e(u))$.

By the *l*-reduction $R \rightarrow R_l$, z_2, z_3, \cdots define a sequence in $R_l = \mathbb{C}[t_2, \cdots, t_l]$. Set

$$(3.8) y_i = lz_i \text{for } i = 2, \dots, l$$

in R_t . Then (y_2, \dots, y_t) coincides with the "flat generator system" of type A_{t-1} in the sense of K. Saito, T. Yano and J. Sekiguchi [2]. We call the sequence (y_2, \dots, y_t) the flat coordinates associated with (t_2, \dots, t_t) . Then, for the versal deformation $F = x^t + t_2 x^{t-2} + \dots + t_t$ of type A_{t-1} , we have

(3.9)
$$\partial_{y_i}(F) = e_{l-j} \quad \text{for } j=2, \dots, l \quad \text{in } R_i[x].$$

Note also that $(1/l)\partial_x(F) = e_{l-1}$. The coordinate transformations between (t_2, \dots, t_l) and (y_2, \dots, y_l) are given by the following:

(3.10)
$$y_{j} = \frac{l}{j-1} (1+t(u))_{j}^{(j-1)/l} \quad \text{for } j=2, \dots, l$$

and

(3.11)
$$\begin{cases} t_{j} = \frac{-l}{j-l} \left(1 - \frac{1}{l} y(u) \right)_{j}^{j-l} & \text{for } j = 2, \dots, l-1, \\ t_{i} = -l \log \left(1 - \frac{1}{l} y(u) \right)_{i}, \end{cases}$$

where $y(u) = \sum_{i=2}^{l} y_i u^i$.

4. The Hamiltonian representation and a quantized contact transformation. In what follows, we give a canonical representation of the Gauss-Manin system H_F associated with the versal deformation $F = x^l + t_2 x^{l-2} + \cdots + t_l$ of type A_{l-1} ($l \ge 2$). By doing so, we can determine the quantized contact transformation which reduces H_F to a standard form.

Let (y_2, \dots, y_l) be the flat coordinates associated with (t_2, \dots, t_l) (no. 3). Then, by the versality formula (3.9), we get

$$(4.1) \qquad \quad \partial_{y_{l-i}}\partial_{y_{l}}^{-1}\delta(F) = e_{i}\delta(F) \qquad \text{for } i = 0, \cdots, l-2 \text{ in } \mathcal{C}_{[F]}.$$

We set $\partial_{i*}=\partial_{y_{i*}}$, where $i^*=l-i$, for $i=0, \dots, l-2$.

Proposition 4. (i) Let i and j be integers with $1 \le i$, $j \le l-2$. Then we have

$$(4.2) \hspace{1cm} \partial_{\imath *} \partial_{\jmath *} \partial_{0 *}^{-2} \delta(F) = \begin{cases} e_{\imath} e_{\jmath} \delta(F) & \text{if } i+j < l, \\ e_{\imath} e_{\jmath} \delta(F) + \frac{1}{l} \partial_{0 *}^{-1} \delta(F) & \text{if } i+j = l. \end{cases}$$

(ii) Let $\alpha = (\alpha_1, \dots, \alpha_{l-2}) \in \mathbb{N}^{l-2}$ be a multi-index such that $|\alpha| = \sum_{i=1}^{l-2} \alpha_i \ge 3$ and $||\alpha|| = \sum_{i=1}^{l-2} i\alpha_i \le l$.

Then we have

$$(4.3) \hspace{1cm} \partial_{1^*}^{\alpha_1} \cdots \partial_{(l-2)^*}^{\alpha_{l-2}} \partial_{0^*}^{-|\alpha|} \delta(F) = e_1^{\alpha_1} \cdots e_{l-2}^{\alpha_{l-2}} \delta(F).$$

We denote by η_j the covector corresponding to the operator $\partial_j = \partial_{\nu_j}$ for $j = 2, \dots, l$ and set

(4.4)
$$H(\eta) = H(\eta_2, \dots, \eta_l)$$

$$= -l\eta_l \log \left(1 + \frac{1}{\eta_l} \eta_*(u)\right)_l,$$

where $\eta_*(u) = \sum_{i=1}^{l-2} \eta_{i*} u^i$, and

(4.5)
$$H'_{j}(\eta) = \partial_{\eta j} H(\eta) \quad \text{for } j = 2, \dots, l.$$

Thus we obtain a sequence $H'_2(\partial_y), \dots, H'_l(\partial_y)$ of micro-differential operators in $\mathcal{E}_{S,(0,dy_l)}$:

(4.6)
$$H'_{j}(\partial_{y}) = -l(1 + \partial_{l}^{-1}\partial_{*}(u))_{j}^{-1}$$
 for $j = 2, \dots, l-1$ and

(4.7)
$$H'_{l}(\partial_{y}) = -l(1 + \partial_{l}^{-1}\partial_{*}(u))_{l}^{-1} - l \log (1 + \partial_{l}^{-1}\partial_{*}(u))_{l},$$

where $\partial_*(u) = \sum_{i=1}^{l-2} \partial_{i*} u^i$. By Theorems 3 and 4 combined with Proposition 4, we obtain

Theorem 5 (Hamiltonian representation for H_F). With the notations above, the Gauss-Manin system H_F of type A_{l-1} is represented as the following system of micro-differential equations:

(4.8)
$$\begin{cases} y_{j}u = H'_{j}(\partial_{y})u & for \ j = 2, \cdots, l-1 \ and \\ y_{l}u = H'_{l}(\partial_{y})u + \frac{l-1}{2}\partial_{y_{l}}^{-1}u. \end{cases}$$

In other words, we have an isomorphism

$$\mathcal{E}(0)\Big/\sum_{j=2}^{l}\mathcal{E}(0)P_{j}\overset{\sim}{\longrightarrow}H_{F}^{(0)},$$

where $\mathcal{E}(0) = \mathcal{E}_{s}(0)_{(0,dy_{l})}$ and

(4.9)
$$P_{j} = y_{j} - H'_{j}(\partial_{y}) \quad \text{for } j = 2, \dots, l-1,$$

$$P_{l} = y_{l} - H'_{l}(\partial_{y}) - \frac{l-1}{2} \partial_{y_{l}}^{-1}.$$

Corollary. With the coordinates $(y_2, \dots, y_l; \eta_2, \dots, \eta_l)$ of T*S, the characteristic variety of the Gauss-Manin system H_F is defined by the equations

(4.10)
$$y_j = H'_j(\eta) \quad \text{for } j = 2, \dots, l,$$

near the codirection $(0, dy_i)$.

Note that the equations (4.10) give a parametrization of the discriminant set of the versal deformation F.

Let $T = \mathbb{C}^{l-1}$ be another complex affine (l-1)-space with coordinates (x_2, \dots, x_l) . We define a quantized contact transformation

$$\Phi: \mathcal{E}_{s,(0,dy_l)} \xrightarrow{\sim} \mathcal{E}_{T,(0,dx_l)}$$

as follows. (For the generalities of quantized contact transformations, see F. Pham [1].) Set

$$(4.11) h(x_2, \dots, x_{l-1}) = -l \log (1 + x_*(u))_i,$$

where $x_*(u) = \sum_{i=1}^{l-2} x_{i*}u^i$. As the kernel form of the transformation Φ , we take

(4.12)
$$\gamma = \delta(y_i - x_i - h(x_2, \dots, x_{i-1}) - \sum_{i=2}^{l-1} y_i x_i) \otimes dy_2 \wedge \dots \wedge dy_{i-1}$$

Then the transformation Φ is defined by

$$\Phi(P) \cdot \gamma = \gamma \cdot P$$
 for each $P \in \mathcal{E}_{s,(0,dy_l)}$.

Theorem 6. By the quantized contact transformation Φ with kernel form γ , the Gauss-Manin system H_F is transformed to the following system of micro-differential equations for $\delta^{((1-l)/2)}(x_l)$:

(4.13)
$$\begin{cases} \partial_{x_{j}}\partial_{x_{l}}^{-1}u=0 & \text{for } j=2, \cdots, l-1 \\ x_{l}u=\frac{l-1}{2}\partial_{x_{l}}^{-1}u. \end{cases}$$

References

- [1] F. Pham: Singularités des systèmes différentiels de Gauss-Manin. Birkhäuser, Boston (1979).
- [2] K. Saito, T. Yano, and J. Sekiguchi: On a certain generator system of the ring of invariants of a finite reflection group. Comm. in Algebra, 8, 373– 408 (1980).
- [3] K. Saito: Primitive forms for a universal unfolding of a function with an isolated critical point (preprint).
- [4] S. Ishiura and M. Noumi: A calculus of the Gauss-Manin system of type A_l . I. Proc. Japan Acad., 58A, 13-16 (1982).