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17. A Calculus of the Gauss-Manin System of Type A;. 11

The Hamiltonian Representation

By Shinzo ISHIURA*) and Masatoshi NoumI**
(Communicated by Kdsaku Yo0sIDA, M. J. A,, Feb, 12, 1982)

The present note is the later half of our article titled “A calculus
of the Gauss-Manin system of type A,”. We keep the notation and the
terminology in our previous note [4].

3. The flat coordinate system. Now we return to the setting of
no. 1 and work with the ring R((x"!)), where R=Cls,,s;, ---]1. We
define a new “coordinate system” (z,, 2, - - -) for R in place of (s,, 83, - - +)
by the formula

(3.1) oy

i=2
It is easy to see that z,,z,, - - - are determined inductively as polyno-
mials in s,,8;, - - - and satisfy 9,(2)=1 and 9,(2,)=0 for ¢<j. The
sequence (2, 2;, - - -) in R will be called the flat coordinates associated
with (s, 85, - - +).
Theorem 2 (Versality formula). The flat coordinate system
(25, 24, - - +) 18 characterized by the formulae

(3.2) 0,(f)=0a.(Nf~* for j=2,8,---.
Moreover we have
(3.3) 0,(F)=ke,_, for §=2,8, - - -.

For an indeterminate u, set s(uw)=>3,su' and z(w)=> 7,24
Then the coordinate transformations between the two coordinate sys-
tems are given by

(3.4) z,=71—1(1+s(u))§" for j=2,3, - - -
and
(3.5) sj=ﬁ(1—z(u));-l for j=2,3, - - -.

An advantage of our formation of the flat coordinates lies in the
following two theorems, which will play an essential role in no. 4.

Theorem 3 (Elimination of the variable x). In terms of the flat
basis (e),en for Rlx], the flat coordinates (2,, 2, - - -) are represented by
(3.6) zy=—1+e(w);'  forj=2,8,.--,
where e(u)=72 7., eu'.

Theorem 4. The sequence (F),cy 18 represented by
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3.7 F.=klog (1 +e(u)), for k=1,2, ...,
where log (1+e(w)), stands for the coefficient of u* in the Taylor ex-
pansion of log (14 e(w)).

By the Il-reduction R—R,, 2,2, --- define a sequence in R,
=Cl[t,, ---,t,]. Set
(8.8) y,=lz, for (=2, -..,1
in R;,. Then (y,, ---,¥,) coincides with the “flat generator system” of
type A,_, in the sense of K. Saito, T. Yano and J. Sekiguchi [2]. We
call the sequence (¥, ---,¥;) the flat coordinates associated with
(tyy - -5 t). Then, for the versal deformation F=ua'+t,2' %+ ...+,
of type 4,_,, we have
(3.9) 0,(F)=e,_; for j=2,...,1 in R,[z].
Note also that (1/0)d(F)=e,_;. The coordinate transformations be-
tween (¢, - - -, t,) and (¥, - - -, ¥,;) are given by the following :

(3.10) v=r ! Sty for =2, -,
and

m-__%(l-__mwv " forj=2,...,1—1,
(3.11) -

t,=—1log (1_Ty(“))’
l

where y(w)=>_, yu'.

4. The Hamiltonian representation and a quantized contact
transformation. In what follows, we give a canonical representation
of the Gauss-Manin system H, associated with the versal deformation
F=x'+t,x'-*+ ...+t of type 4,_, (I>2). By doing so, we can deter-
mine the quantized contact transformation which reduces H, to a
standard form.

Let (4, - -+, ¥,) be the flat coordinates associated with (¢, ---,¢)
(no. 3). Then, by the versality formula (3.9), we get
4.1) 0y, 07 0(F)=e6(F) for ¢=0, ---,1—2 in Cpy.

We set 0,=0,,., Where *=1—1, for 1=0, ---,1—2.

Proposition 4. (i) Let i and j be integers with 1<4, j<I—2.

Then we have

e.e,0(F) if i+5<l1,
@D WDAHZN eepw)+1o800) if i+i=l.
(i) Let a=(ay, ---,a;,_y) € N'-* be a multi-index such that

- 1-2
=3 @, >3 and |a|=3, i, <l
i=1 i=1

Then we have
4.3) 0. - - 043405 0(F) =eg*- - - ef1520(F).
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We denote by 7, the covector corresponding to the operator 9,=4,,
for /=2, --.,l and set

H(7])=H(772’ ity 7];)
= —lIy, log (1 +—;* v*(u))
l
where 7, (w)=>'2} ', and
(4.5) H§(0)=a”H(77) for j=2, --.,1.

Thus we obtain a sequence H;(@,), ---,Hy(d,) of micro-differential
operators in &, g, qyp :

4.4

’
l

(4.6) Hi(0,)=—U140;"0,(w);* for 7=2,.-.,1—1
and
4.7 H)0,)=—U1+4+06;"0,(w);* —1log (1+0;9,(w),,

where 0,(uw)=> !} d.u'. By Theorems 3 and 4 combined with Propo-
gition 4, we obtain

Theorem 5 (Hamiltonian representation for H;). With the nota-
tions above, the Gauss-Manin system H, of type A,_, is represented as
the following system of micro-differential equations :
{y,u=Hg(ay)u for j=2,.--,1—-1 and

(4.8) 1

y,u=H;(0,)u+ l;2~a;}u.

In other words, we have an isomorphism
l
£ / 3 EOP~>HY,
=

where £(0)=E4(0),4,, and
P,=y,—H/®,) for j=2,.-.,1-1,
P=y—Hi0)- 1o

Corollary. With the coordinates (Y, -+, Y5 7 + - - ) of T*S, the
characteristic variety of the Gauss-Manin system H is defined by the
equations
(4.10) y,=Hj(p)  forj=2,---,1,
near the codirection (0, dy,).

Note that the equations (4.10) give a parametrization of the dis-
criminant set of the versal deformation F.

Let T=C!! be another complex affine (I—1)-space with coordinates
(@ -+ -, %,). We define a quantized contact transformation

4.9)

9: Es,0,090—>Cr, 0,020
as follows. (For the generalities of quantized contact transformations,
see F. Pham [1].) Set
(4.11) (2, - - -y @)= —11og (1 +a,(w)),,
where z,(w)=> 2z u'. As the kernel form of the transformation
@, we take
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-1
4.12) r=od(y,—w,— My - -+, xz-1)_iz=; Y2 )QdY, N\ - - - ANdY, ;.

Then the transformation @ is defined by
O(P)-y=7-P for each P € &, o,y
Theorem 6. By the quantized contact transformation @ with
kernel form y, the Gauss-Manin system Hp is transformed to the fol-
lowing system of micro-diff erential equations for d¢-">(x,):
05,05, u=0 for j=2,-.-,1—1 and

(4.13) =121

o5 u.
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