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106. Smooth Global Solutions for the One-Dimensional
Equations in Magnetohydrodynamics

By Shuichi KAWASHIMA™®) and Mari OKADA**)

(Communicated by Kosaku Yo0sIpA, M. J. A., Nov. 12, 1982)

§1. Introduction. The motion of electrically conducting fluids
on one space coordinate is described by the equations in Lagrangian
representation ([1]):

(1/p)t_ux=0:
(1) u,+ @ +|B|2/2ﬂo)z = (Vp’ux)m V— (EIB/ﬂo)x = (#P'vx)'a::

16, + O,/ ey, =] €){(k00.). +vp¥i+ 00, + (o 1) | B, I},

B/p).— (B),={(o/o1)B.}.. B
Here >0, u= ', v, %*) € R*, >0 and B=(B', B’, B°) ¢ R® represent the
mass density, the velocity, the absolute temperature and the magnetic
induction, where we write u=u', v=’, v*), B=(B* B®), and B'is a
constant.

We assume that the pressure p and the internal energy e are
smoothly related to p and 6 by the equations of state
(2) p,>0, ¢€,>0, de=0dS—pd(l/p),
where S=S(p, 6) is the entropy; the coefficients of viscosity p,v, the
coefficient of heat conductivity # and the coefficient of electrical resis-
tivity 1/¢ (o: the coefficient of electrical conductivity) are all smooth
functions of p and 6, and are positive or identically zero; p, is the
magnetic permeability, now a positive constant.

In this paper, we seek smooth solutions of (1) in a small neighbor-
hood of a constant state (o, u, 6, B)=(g, 0, 6, B) where >0, >0 and
B e R? are arbitrary fixed constants. To obtain the a priori estimates
for the solutions, we use the following energy form ([4]):

E=e—e+D(1/p—1/p)—0(S—8)+|uf"/2-+|B— B[ |2up,
where ¢=e(p, 6) and so on. Note that if |p—p, §—0]| is small, & is
equivalent to the quadratic form |p—p, u,0—0, B—BP*. This is based
on the strict convexity of the internal energy e as a function of 1/p
and S.

From (1) and (2), we have the energy conservation law :

(3)  (e+|uP/2+|B/24p),+{®+|BF/2p)u— BB/ ) v},
={vour, + pov - v, +rod,+(o/op5)B - B.}.,
and the equation of entropy :
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(4)  S,={(p/0)0.}.+ (/O opri+ o 9.+ (ep/6)6%+ (o) 04) | B. I},
Using (1), (3) and (4), we have the identity for £ which plays an
important role in the present paper:
(5) &EA{w+|B}/21—D— |B|2/2ﬂo)u—(EI(B—B)/#o) v},
+ @/ 0){vou,+ po | vl + (ko) )63+ (0/0i) | B, T}
= {voutt, + 100 - v, + (L — /606, + (o) 04)(B— B)- B.)}...

§2. Results and remarks. We consider the system (1) with the

initial data:
(6) {(P’ u, 0, B)(0, )= (Po’ Uy 00, By)(1), rzeR,

inf {p,(x), 6,(x); x € R'} >0,
where u,= (4, v,). We set up two cases: 0<<g<oo (finitely conducting)
and o=oo (perfectly conducting). In each case there are the follow-
ing four cases:

(i) wv, >0, (ii) p=v=0, £>0,

(i) pv>0, £=0, (iv) p=y=k=0.

Theorem 1. Let us assume that 0<g<oo, B'x0 and one of the
above cases (1)—(iv) for the system (1) ; in the cases (ii) and (iv) we also
assume the additional conditions |p,(p, 0)|+|B|=0 and |B|x0, respec-
tively. Moreover assume that (o,—p, uy, 6,— 6, B,— B) € H¥(R") for the
initial data (6). Then if ||p,— D> Uy, 6,—8, B,— B|, is sufficiently small,
the initial value problem (1) (6) has a unique smooth solution (o, u, 6, B)
(&, x) global in time. Here ||-|, denotes the norm of the Sobolev space
H(RY).

Remarks. 1. In the cases (i) (ii) the solution (p, #, 8, B)(f) con-
verges to the constant state (g, 0, 6, B) as t—oo in the maximum norm.
While in the cases (iii) (iv) we only know ; ((p, 6), u, B)(t) approaches
to (p(p, 6), 0, B) as t—oco in the maximum norm. 2. If B'=0 is as-
sumed for (1), in every case of (i)—~(iv) we also establish the same results
as above ones except that the equation of v becomes trivial (v(¢, )
=v,(x)) for (ii) or (iv). 3. When all the coefficients g, v, x and 1/¢ are
positive and independent of 6, we can show the existence of a classical
global solution of (1) in the Holder space ([4]).

Neglecting the magnetic field and the second and third components
of the velocity (B=v=0) in (1), we have the usual system in fluid
dynamics:

(7) {(1/ 0)—U;=0,  U+D,=pUs)s
0,4 (6D, / es)u, = (1/6a){(ltpﬂz)z +”Pu1}-
For the system (7), statements in Theorem 1 are simplified as follows :

Corollary. For (7) we assume one of the cases (i)—(iii) (for case
(ii) we assume p,(g, )0 in addition). Then if | py—p, Uy 6,—0. is
appropreately small, a unique smooth solution (o, u, 6)(¢, x) of (7) exists
for all time.
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Remark. It is well known that in the case (iv) smooth solutions
of (7) in general develop singularities in the first derivatives in finite
time ([2]).

Theorem 2. Assume that c=oc0, B'20 and (i) or (iii) for (1).
Then if the initial data are small as in Theorem 1, a unique smooth
solution of (1) exists globally in time.

Remarks. 1. In spite of =00, we can show the same decay law
as in Theorem 1. 2. When (iv) is satisfied then the first derivatives
of solutions of (1) become infinite in finite time ([2]), while in the case
of (ii) we have no results on the existence or non-existence of global
solutions of (1). 3. If B'=0, the last equation of (1) implies (B/p)(t, )
=(B,y/p)(x). Therefore the system (1) is reduced to

{(1/10):_“1:07 ut+{p+(1/2ﬂo) IBO/POIZ Pz}z= (Vpux)x,
0t+(0pa/ea)ux=(1/6a){(/ﬁ7‘00x)x+UP’M§}y
where we set v=0 for simplicity. In this system, it seems that addi-
tional considerations are necessary to the general case of B,/p,
2 constant.

§ 3. Proof of theorems. Since local existence theorem is well
known ([5]), to show the existence of a global solution, it suffices to
obtain the a priori estimates for the solution. We prove the estimates
only in the case that 0<¢<<oo, B'x0 and (iv). The method here is
also applicable with slight modification to the other cases and gives
the analogous estimates.

Set Q,=[0, T1x R' (for T>0) and

E(T)*=sup {|(o—p>u,60—8, B—B)@®)|}; t € [0, T}

+j 1D.w(os 8), 8|+ D.B() |2 de.

Lemma (a priori estimate). Let T be some positive constant.
Assume that (o, u, 6, B)(t, x) satisfies inf {p(t, ), 6(t, 2); (¢, x) € Q;}>0
and E(T)<oo, and is a solution of (1) in the case that 0<<oc<oo, B'x0
and (iv) (|B|%0). Then if E(T) is suitably small, we have the a priori
estimate E(T)<CE(0) for some constant C>1 independent of T.

Proof. Integrating (5) with p=v=k=0 over Q, (t<[0,T]), we
have the following L*(R')-estimate for the solution:

(8) 1(o—5, u, 0—8, B— B)(®) |+ j I D.B@I} dr<CE(0),

where ||-|| denotes the L*(R)-norm. Next, in the same way as [3], we
obtain the L*(R')-estimates for the derivatives of the solution. Rewrite
the system (1) with g=v=x=0 by the change of variables:

Do+ qu.=(op,/ €08) |B.f',  wA+@+|BF/2p),=0,
(9) v,—(B'B/p).=0,  S,=(o/00sd)|B.P,

B,+ o(Bu,— B'v,)=p{(p/o1t)B.}.,
where q=pp,+0p}/e,>0 by (2).
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Operate D.=(9/dx)", 1=0,1,2, on each equation in (9) and we
obtain the system of D.(p, u, S, B). First, multiplying the equations
of Dip, Di(u, S) and D.B by (1/¢)Dip, Di(u, S) and (1/up)D.B respec-
tively, summing them up, integrating over @,, and then adding the
resulting equality for =1, 2, we obtain after integration by parts

(10) | Do, u, 6, B)(?) ||f+J: | D:B(2) | de < C(E(0)*+E(T)).

Secondly, multiply the equations of Dlp, Diu and D.B by
2(B'B/q)-D'v,, BD'p, (B: positive constant) and (BD.u,—B'Div,)/p
respectively, sum up the equalities obtained and integrate it over Q..
Estimating the resulting equality by use of the Schwarz inequality,
taking 8 suitably small and adding for =0, 1, we arrive at

an [ 1D.0, 0@ 12 de—CllI G0~ 7 1,00, B-B)t)

+[ I1D.B@IE de} < CEOF + E@Y),

where (B!, B)=0 is used.

Joining (8), (10) and (11) together, we gain the inequality E(T)*
< C(E(0)+E(T)) from which the assertion in Lemma follows directly.
This completes the proof.

Finally we show the asymptotic behavior of the solution. Since
D, (p, u) € L¥0, oo ; H'(R)) and DB e L*0, oo ; H¥(R")), we have d,(p, u, B)
e L0, oo ; H'(R)) by use of (9). Therefore we conclude that
ID, (0, u, B)(t)||—0 as t—oco. It follows from this that

sup {|(p(o, ) — (o, ), u, B—B)(})|; « € R*}
converges to zero as t—oo with the aid of the Sobolev inequality in
one space dimension.

This completes the proof of Theorems.

References

[1] L. D. Landau and E. M. Lifshitz: Electrodynamics of Continuous Media.
Pergamon, New York (1960).

[2] Tai-Ping Liu: J. Diff. Eq., 33, 92-111 (1979).

[8] A. Matsumura: University of Wisconsin, MRC Technical Summary Re-
port, no. 2194 (1981).

[4] M. Okada and S. Kawashima: On the equations of one-dimensional motion
of compressible viscous fluids (to appear in J. Math. Kyoto Univ.).

[5] A.I Volpert and S.I. Hudjaev: Math, USSR Sbornik, 16, 517-544 (1972).



