91. Über die Nullstellen der von Potenzsummen der natürlichen Zahlen definierten Polynome

Von Noriaki KIMURA

College of Industrial Technology, Nihon University

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 13, 1982)

Es handelt sich in [1] um die Nullstellen der Polynome $P_k(x) \in \mathbf{Q}[x], k \in \mathbb{N}$, die durch

$$P_k(n) = \sum_{k=1}^n \nu^k$$
 für alle $n \in \mathbb{N}$

erklärt sind. Da wurde es beweisen, daß kein $P_k(x)$ andere rationale Nullstellen haben kann als x=0, x=-1, x=-1/2. In der vorliegenden Arbeit beweisen wir zwei Sätze über die Nullstellen dieser Polynome. Der Satz 1 behauptet, daß kein $P_k(x)$ imaginäre Nullstellen haben kann, deren reelle Teile zwischen -1 und 0 liegen. Der Satz 2 gibt Auskunft über die Nullstellen in den quadratischen Zahlkörpern.

Satz 1. $P_k(z) \neq 0$ für $z \in C$, $\mathcal{J}(z) \neq 0$, $-1 \leq \mathcal{R}(z) \leq 0$, wobei $\mathcal{J}(z)$ bzw. $\mathcal{R}(z)$ den imaginären Teil bzw. den reellen Teil von z respektiv bedeutet.

Beweis. Nach der Formel (6) in [1], d.h.

$$P_k(-x) = (-1)^{k+1} P_k(x-1)$$
 $(k \ge 1)$

genügt es zu beweisen, daß $P_k(z) \neq 0$ für $\mathcal{J}(z) \neq 0$, $-1 \leq \mathcal{R}(z) \leq -1/2$ ist. Setze z = x - 1 + yi, x, $y \in \mathbf{R}$, $i = \sqrt{-1}$. Für y > 0, $0 \leq x \leq 1/2$ beweisen wir $P_k(x - 1 + yi) \neq 0$.

In Anbetracht der Darstellung der $P_k(x)$ durch Bernoullische Polynome $B_m(x)$ bzw. Bernoullische Zahlen B_m , haben wir

$$\begin{split} (k+1)P_{k}(z) &= (k+1)P_{k}(x-1+yi) \\ &= \sum_{j=0}^{k+1} \binom{k+1}{j} (yi)^{k+1-j} B_{j}(x) - B_{k+1}. \end{split}$$

Dabei sind die folgenden vier Fälle zu unterscheiden.

(1) Fall $k \equiv 1 \pmod{4}$.

Wenn 0 < x < 1/2 ist,

$$(k+1)\mathcal{J}(P_{k}(z)) = \frac{1}{i} \sum_{\substack{0 \le j \le k+1 \\ j; \text{ ungerade}}} {k+1 \choose j} (yi)^{k+1-j} B_{j}(x) < 0.$$

Ist nämlich j=2m+1, $m \ge 0$, so folgt

$$i^{k-j}B_{j}(x) = (-1)^{m}B_{2m+1}(x) < 0$$

(s. [2]).

Für x=1/2, haben wir

$$(k+1)\mathcal{R}(P_k(z)) = \sum_{\substack{0 \le j \le k+1 \\ j \text{ gerade}}} \binom{k+1}{j} (yi)^{k+1-j} B_j(1/2) - B_{k+1} < 0.$$

Ist nämlich j=2m, m>0, so erhalten wir

$$i^{k+1-j}B_{j}(1/2) = (-1)^{m-1}B_{2m}(1/2) = \frac{1-2^{2m-1}}{2^{2m-1}}(-1)^{m-1}B_{2m} < 0,$$

und $B_{k+1} > 0$ in diesem Fall.

Für x=0 erhält man

$$(k+1)\mathcal{R}(P_k(z)) = \sum_{\substack{0 \le j \le k \ j; \text{ gerade}}} {k+1 \choose j} (yi)^{k+1-j} B_j > 0,$$

da $i^{k+1-j}B_j = (-1)^{m+1}B_{2m} > 0$ für j=2m ist. Also haben wir $P_k(z) \neq 0$ im Fall $k \equiv 1 \pmod 4$. Die gleichartige Rechnung läßt sich auch in den anderen drei Fällen ebenso ausführen.

2) Fall
$$k\equiv 2 \pmod 4$$
; $\Re(P_k(z)) > 0$ für $0 < x < 1/2$ $\Im(P_k(z)) < 0$ für $x = 1/2$ $\Im(P_k(z)) > 0$ für $x = 0$
3) Fall $k\equiv 3 \pmod 4$; $\Im(P_k(z)) > 0$ für $0 < x < 1/2$ $\Re(P_k(z)) > 0$ für $x = 1/2$ $\Re(P_k(z)) < 0$ für $x = 0$
4) Fall $k\equiv 4 \pmod 4$; $\Re(P_k(z)) < 0$ für $0 < x < 1/2$ $\Im(P_k(z)) > 0$ für $x = 1/2$ $\Im(P_k(z)) > 0$ für $x = 1/2$ $\Im(P_k(z)) > 0$ für $x = 1/2$ $\Im(P_k(z)) < 0$ für $x = 0$.

Jedenfalls ergibt sich $P_k(z) \neq 0$ für y > 0, $0 \leq x \leq 1/2$, damit haben wir unsere Behauptung bewiesen.

Satz 2. Sei d die Diskriminante eines quadratischen Körpers $Q(\sqrt{d})$ und α , β ganze Zahlen in $Q(\sqrt{d})$ mit der Norm $N\beta \neq \pm 1$ und $(\alpha, \beta) = 1$. Wenn $P_k(\alpha/\beta) = 0$ ist, dann bestehen nur folgende Möglichkeiten:

$$\begin{array}{lll} (\beta) = \mathfrak{z} & oder & 2 & f\ddot{u}r \ 3 \not\nmid d \\ (\beta) = \mathfrak{z}^{\iota} \mathfrak{l}^{s} & oder & 2 \mathfrak{l}^{s} & f\ddot{u}r \ 3 \mid d, \end{array}$$

wobei 3 bzw. 1 ein Primdivisor von 2 bzw. 3 in $Q(\sqrt{d})$ ist und t, s=0, 1 ist, die nicht beide gleichzeitig Null sein können.

Beweis. Sei $\mathfrak p$ ein in β aufgehender Primdivisor und p eine Primzahl ($\in \mathbf Q$) mit $\mathfrak p \mid p$. Da nach dem Satz von v. Staudt $B_{\nu}\beta^{\nu} \equiv 0 \pmod{\mathfrak p}$ für $\nu \geq 3$ gilt, haben wir aus der Annahme $P_{k}(\alpha/\beta) = 0$

(*) $\alpha^{k+1} + (k+1)(-1/2)\alpha^k \beta + (k(k+1)/2)(1/6)\alpha^{k-1}\beta^2 \equiv 0 \pmod{\mathfrak{p}}.$ Wenn $p \nmid d$ ist, so ist $p = \mathfrak{p}$ oder $p = \mathfrak{p}\mathfrak{p}'$ (wo \mathfrak{p}' die Assozierte ist) und $B_2\beta^2 = \beta^2/6 \equiv 0 \pmod{\mathfrak{p}}.$ Wenn $B_1\beta = -\beta/2 \equiv 0 \pmod{\mathfrak{p}}$ ist, dann folgt aus (*) $\alpha \equiv 0 \pmod{\mathfrak{p}}$, was ein Widerspruch ist. Also haben wir p = 2 und $4 \nmid d$ und k ist gerade und $\mathfrak{p} \parallel \beta$ (d.h. β ist teilbar durch \mathfrak{p} aber nicht durch \mathfrak{p}^2). Wenn $p \mid d$ ist, so ist $p = \mathfrak{p}^2$ und es folgt aus (*), daß p = 2 oder p = 3 sein muß. Setzen wir $\mathfrak{g}' \parallel \beta$ und $\mathfrak{l}' \parallel \beta$, dann haben wir t = 0, 1, 2 und t = 0, 1, 3 und t = 0, 1, 3 und t = 0, 1, 3 und t = 0, 3. Daraus folgt unmittelbar die Behauptung.

Literatur

- [1] N. Kimura und H. Siebert: Über die rationalen Nullstellen der Potenzsummen der natürlichen Zahlen definierten Polynome. Proc. Japan Acad., 56A, 354-356 (1980).
- [2] N. E. Nörlund: Differenzenrechnung. Springer (1924).