12. Class Number Calculation and Elliptic Unit. I

Cubic Case

By Ken NAKAMULA

Department of Mathematics, Tokyo Metropolitan University

(Communicated by Shokichi IYANAGA, M. J. A., Jan. 12, 1981)

Let \(K \) be a real cubic number field with the discriminant \(D < 0 \). In the following, an effective algorithm will be given, to calculate the class number \(h \) and the fundamental unit \(\varepsilon_i \) of \(K \) at a time.

Angell [1] has given a table of \(h \) and \(\varepsilon_i \) of \(K \) for \(D > -20000 \). In the special case when \(K = \mathbb{Q}(\sqrt[3]{m}) \), a pure cubic number field, Dedekind [5] has given an analytic method to calculate \(h \). In such a pure cubic case, Dedekind’s method has been improved by several authors, see [3] and [13]. In all these algorithms, however, it is necessary to compute \(\varepsilon_i \) by Voronoi’s algorithm, see [6, pp. 232–230], before the calculation of \(h \).

Our method does not need Voronoi’s algorithm, and \(h \) and \(\varepsilon_i \) are calculated at a time. The starting point of the method is the index formula on elliptic units given by Schertz, see [11] and [12], and the idea of the algorithm is learned from G. Gras and M.-N. Gras [8]. There is a similar algorithm to compute the class number and fundamental units of a real quartic number field which is not totally real and contains a quadratic subfield, see the author’s [10]. The author expects that such an algorithm will be generalized to calculate the class number of a non-galois number field whose galois closure is an abelian extension over an imaginary quadratic number field.

§ 1. Illustration of algorithm. The class number \(h \) of \(K \) is given by the index of the subgroup generated by the so called “elliptic unit” \(\eta_\varepsilon \) of \(K \), of which the definition will be given in § 4, in the group of positive units of \(K \), see [11]:

\[
\eta_\varepsilon = \varepsilon_i^h, \quad \text{i.e.} \quad h = \langle \varepsilon_i \rangle : \langle \eta_\varepsilon \rangle.
\]

Our method consists of the following steps:

(i) to compute an approximate value of \(\eta_\varepsilon \) (§ 4),
(ii) to compute the minimal polynomial of \(\eta_\varepsilon \) over \(\mathbb{Q} \) (Lemma 2),
(iii) for any unit \(\xi(>1) \) of \(K \), to give an explicit upper bound \(B(\xi) \) of \(\langle \varepsilon_i \rangle : \langle \xi \rangle \) (Proposition 1),
(iv) for any unit \(\xi(>1) \) of \(K \) and for a natural number \(\mu \), to judge whether a real number \(\sqrt[3]{\xi} \) is an element to \(K \) or not, and to compute the minimal polynomial of \(\sqrt[3]{\xi} \) over \(\mathbb{Q} \) if it is an element of \(K \).
Now, the computation of h and ε_1 goes as follows. Determine the minimal polynomial of η_e over \mathbb{Q} by (i) and (ii). Put $h(\eta_e) = 1$ and compute $B(\eta_e)$ by (iii). Put $\xi = \eta_e$, and test whether the set

$$S(\xi) := \{p \mid p : \text{prime number, } p \leq B(\xi), \sqrt[\xi]{\xi} \in K\}$$

is empty or not by (iv). If $S(\xi)$ is empty, then $\varepsilon_1 = \xi$ and $h = h(\xi)$. If $S(\xi)$ is not empty, take the smallest prime p in $S(\xi)$, and let $\xi = \sqrt[\xi]{\xi}$, $B(\xi) = B(\xi)/p$ and $h(\xi) = p h(\xi)$. The minimal polynomial of ξ over \mathbb{Q} can be calculated by (iv). Next, put $\xi = \varepsilon$ and repeat the above procedure for ξ by using (iv). Then $S(\xi)$ becomes an empty set in a finite number of steps.

§ 2. Upper bound of h. The following Artin's lemma essentially gives an upper bound of the index of a subgroup of the group of units of K.

Lemma 1 (Artin [2]). Let $\varepsilon(>1)$ be a unit of K. Then the absolute value of the discriminant $D(\varepsilon)$ of ε is smaller than $4\varepsilon^2 + 24$, i.e. $|D(\varepsilon)| < 4\varepsilon^2 + 24$.

Note that $D(\varepsilon)$ is a non-zero multiple of the discriminant D of K since ε is irrational. It is easy to see that $(|D(\varepsilon)| - 24)/4 > 1$. Then we have

Proposition 1. Let $\xi(>1)$ be a unit of K. Then

$$\langle \xi \rangle : \langle \xi \rangle < 3 \log(\xi)/\log((|D| - 24)/4).$$

On account of (1), we have

Corollary. Let η_e be the elliptic unit of K. Then the class number h of K satisfies

$$h < 3 \log(\eta_e)/\log((|D| - 24)/4).$$

§ 3. μ-th root of units. For any positive unit ξ of K, we denote by $s(\xi)$ and $t(\xi)$ the absolute trace of ξ and $1/\xi$ respectively. The following lemma enables us to calculate the minimal polynomial of a unit of K over \mathbb{Q} from an approximate value of the unit.

Lemma 2. Let $\xi(>1)$ be a unit of K. Then $s(\xi)$ is a rational integer such that $|s(\xi) - \xi| < 2/\sqrt[\xi]{\langle \xi \rangle}$ and $1/\xi + s(\xi)/\xi$ is a rational integer, and $t(\xi)$ is given by $t(\xi) = 1/\xi + s(\xi)/\xi$.

For any rational integers s and t, define $r_\mu = r_\mu(s, t) (\mu = 1, 2, 3, \cdots)$ as follows:

\[
\begin{align*}
r_1 & = s, \quad r_2 = s^2 - 2t, \quad r_3 = s^3 - 3st + 3, \\
r_\mu & = s r_{\mu-1} - t r_{\mu-2} + r_{\mu-3} \quad \text{ if } \mu \geq 4.
\end{align*}
\]

Then we have

Proposition 2. Let $\xi(>1)$ be a unit of K and μ be a natural number. Put $\varepsilon = \sqrt[\xi]{\xi}(>1)$. The real number ε belongs to K if and only if there exists a rational integer u such that

$$|u - \varepsilon| < 2/\sqrt[\xi]{\langle \xi \rangle},$$

and $r_\mu(u, \varepsilon)$ and $r_\mu(v, u) = t(\xi)$.\]
where \(v \) is the nearest rational integer to \(1/\varepsilon + \varepsilon(u - \varepsilon) \). If \(\varepsilon \) belongs to \(K \), then
\[
s(\varepsilon) = u \quad \text{and} \quad t(\varepsilon) = v.
\]
This proposition gives us an effective method to judge whether the \(\mu \)-th root of a unit \(\xi(>1) \) of \(K \) is an element of \(K \) or not. It only uses \(s(\xi) \), \(t(\xi) \) and an approximate value of \(\xi \).

§ 4. Elliptic unit. In order to define the elliptic unit \(\eta_e \) of \(K \), let us prepare some notations. Let the imaginary quadratic number field \(\Sigma = \mathbb{Q}(\sqrt{D}) \) and the discriminant of \(\Sigma \) be \(-d\). Then the galois closure of \(K/Q \) is the composite field \(L = K\Sigma \), which is dihedral of degree 6 over \(Q \) and cyclic cubic over \(\Sigma \). The abelian extension \(L/\Sigma \) has a rational conductor \((f) \) with a natural number \(f \), and \(D = -f^3d \). Moreover, \(L \) is contained in the ring class field \(\Sigma, \) modulo \(f \) over \(\Sigma \). All these facts are known in Hasse [9]. Let \(\mathfrak{N}(f) \) be the ring class group of \(\Sigma \) modulo \(f \). By the classical theory of complex multiplication, see Deuring [7], the ring class field \(\Sigma_f = \Sigma(j(f)) \) for \(f \in \mathfrak{N}(f) \), where \(j(f) \) is the ring class invariant as usual, and there is the canonical isomorphism
\[
\lambda : \mathfrak{N}(f) \cong \text{Gal} (\Sigma_f/\Sigma); \quad j(f^{(T)}) = j(f^{(T)}_{f^{-1}}) \quad \text{for } f, f' \in \mathfrak{N}(f).
\]
Let \(\mathfrak{u} = \lambda^{-1}(\text{Gal} (\Sigma_f/L)) \), take and fix a class of \(f \) which does not belong to \(\mathfrak{u} \). For \(f \in \mathfrak{N}(f) \), denote by \(\gamma_f \) a complex number with its imaginary part positive such that \(Z \gamma_f + Z \in f \). Then the elliptic unit \(\eta_e \) of \(K \) is defined, independent of the choice of \(\gamma_f \) and \(\gamma_{f'} \), by the following:
\[
(2) \quad \eta_e := \prod_{f \in \mathfrak{u}} \sqrt{\text{Im} (\gamma_f)/\text{Im} (\gamma_{f'})} |\eta(\gamma_f) / \eta(\gamma_{f'})|^{|f|/2}.
\]
Here \(\eta(z) \) is the Dedekind eta-function:
\[
\eta(z) = \exp (\pi i z/12) \prod_{v=1}^{\infty} (1 - \exp (2\pi ivz)).
\]
Now we should see how an approximate value of \(\eta_e \) is computed. Suppose that \(\mathfrak{N}(f) \) and \(\mathfrak{u} \) have been given already. Then, since we can take \(\gamma_f \) so that \(\text{Im} (\gamma_f) \geq \sqrt{3}/2 \) as in [4], we can compute \(\eta_e \) by (2), using the following lemma for example.

Lemma 3. Let \(z = x + iy \) be a complex number with the imaginary part \(y > 0 \), and put
\[
R_N(z) := -\pi y/6 + \sum_{v=1}^{N-1} \log |1 - \exp (2\pi ivz)|^2.
\]
Then
\[
|\log |\eta(z)|^2 - R_N(z)| < \frac{(2 - \exp (-2\pi Ny))(\exp (-2\pi Ny))}{(1 - \exp (-2\pi Ny))(1 - \exp (-2\pi y))}.
\]
If the discriminant \(D \) of \(K \) is given, it is easy to compute \(f \). Then we can count out explicitly every subgroup \(\mathfrak{u} \) of \(\mathfrak{N}(f) \) which may correspond to \(K \) as in Hasse [9]. Thus the class numbers and the fundamental units of all cubic number fields with the same discriminant.
D can be computed as described above. In pure cubic case, i.e. $K = \mathbb{Q}(\sqrt[3]{m})$ with a cube free natural number m, the corresponding subgroup α of $\mathfrak{N}(f)$ is perfectly determined from the value m, see [5].

References