107. Surgery of Domain and the Green's Function of the Laplacian

By Shin Ozawa

Department of Mathematics, University of Tokyo

(Communicated by Kôsaku Yosida, M. J. A., Dec. 12, 1980)

§ 1. Introduction and results. Let M be a bounded domain in \mathbb{R}^m with smooth boundary. Let N be a compact connected regular smooth submanifold of M. We put $n=\dim N$. In this note we assume that $m\geq n+2\geq 3$. For any sufficiently small $\epsilon>0$, let Γ_{ϵ} be the ϵ -tubular neighbourhood of N defined by

$$\Gamma_{\epsilon} = \{x \in M ; \operatorname{dist}(x, N) < \epsilon\}.$$

We put $M_{\mathfrak{s}} = M \setminus \overline{\Gamma}_{\mathfrak{s}}$.

Let G(x, y) (resp. G(x, y), $\varepsilon > 0$) be the Green's function of the Laplacian with the Dirichlet condition on ∂M (resp. $\partial M \varepsilon$).

In this paper we report the following theorems.

Theorem 1. Assume $m-n \ge 5$, then for any fixed $x, y \in M \setminus N$

$$G_{\mathfrak{s}}(x, y) = G(x, y) - 3S_{\mathfrak{s}} \varepsilon^{m-n-2} \int_{N} G(x, w) G(y, w) dw + O(\varepsilon^{m-n})$$

holds when ε tends to zero. Here S_k denotes the area of the unit sphere in \mathbb{R}^k .

Theorem 2. Assume m-n=3 or 4, then for any fixed $x, y \in M \setminus N$ $G_{\bullet}(x, y) = G(x, y) - (m-n-2)S_{m-n}\varepsilon^{m-n-2} \int_{N} G(x, w)G(y, w)dw + O(K(\varepsilon))$ holds when ε tends to zero. Here $K(\varepsilon) = \varepsilon^{4} |\log \varepsilon|$ in case m-n=4 and $K(\varepsilon) = \varepsilon^{2}$ in case m-n=3.

Theorem 3. Assume m-n=2, then for any fixed $x, y \in M \setminus N$ $G_{\epsilon}(x, y) = G(x, y) + (2\pi)(\log \epsilon)^{-1} \int_{\mathbb{R}^n} G(x, w)G(y, w)dw + O((\log \epsilon)^{-2})$

holds when ε tends to zero.

It should be remarked that the remainder terms $O(\varepsilon^{m-n})$, $O(K(\varepsilon))$, $O((\log \varepsilon)^{-2})$ in Theorems 1-3 are not uniform with respect to x, y.

Theorems 1-3 above are the versions of the Schiffer-Spencer formula which describes the asymptotic property of $G_{\epsilon}(x, y)$ when ϵ tends to zero in case m=2 and n=0. See Schiffer-Spencer [2]. The author considers the case $m\geq 3$, n=0 in Ozawa [1].

Using the techniques developed in [1], we can get an asymptotic formula for eigenvalues of the Laplacian. We give some notations. Let $0 > \lambda_1(\varepsilon) \ge \lambda_2(\varepsilon) \ge \cdots$ be the eigenvalues of the Laplacian in M_{ε} with the Dirichlet condition on ∂M_{ε} . And let $0 > \lambda_1 \ge \lambda_2 \ge \cdots$ be the eigen-

values of the Laplacian in M with the Dirichlet condition on ∂M . We arrange them repeatedly according to their multiplicities.

We have the following

Theorem 4. Assume m=3 and n=1. Fix j. Suppose that the multiplicity of λ_j is one, then

$$\lambda_j(\varepsilon) = \lambda_j + 2\pi(\log \varepsilon)^{-1} \int_{\mathbb{R}^N} \varphi_j(w)^2 dw + O((\log \varepsilon)^{-2})$$

holds when ε tends to zero. Here $\varphi_j(x)$ denotes the normalized eigenfunction of the Laplacian associated with λ_i .

When j=1, the above theorem gives a good asymptotic expression of the shift of the fundamental tone when a fine wire is placed in a region.

Details of the proofs of Theorems 1-4 will be given elsewhere.

§ 2. Sketch of proof of Theorem 1. Recall that $m-n \ge 5$. We fix $w \in N$. We know that G(x, w) has the following asymptotic property when x tends to $w \in N$:

$$\lim_{x\to w} (G(x, w) - ((m-2)S_m)^{-1}|x-w|^{-m+2}) = C(w)$$

for some constant C(w). Here S_m denotes the area of the unit sphere in \mathbb{R}^m . Moreover, we can take L>0 such that

$$|G(x, w)-((m-2)S_m)^{-1}|x-w|^{-m+2}-C(w)| \le L|x-w|$$

holds for any $x \in M \setminus N$, $w \in N$.

Let $w_1, \dots, w_n, w_{n+1}, \dots, w_m$ be a fixed orthonormal coordinate system in R^m with the origin \tilde{w} . We assume that the subspace given by $\{(w_1, \dots, w_n, 0, \dots, 0); w_i \in R, 1 \le i \le n\}$ is the tangent plane of N at \tilde{w} . We put

$$\langle f(\tilde{w}), g(\tilde{w}) \rangle_{*w} = \sum_{k=n+1}^{m} \left(\frac{\partial f}{\partial w_{k}} \right) (\tilde{w}) \left(\frac{\partial g}{\partial w_{k}} \right) (\tilde{w})$$

for any f, $g \in C^{\infty}(M)$.

Put

$$\begin{split} Q_{\epsilon}(x, y) &= G_{\epsilon}(x, y) - G(x, y) + C_{m,n} \varepsilon^{m-n-2} \int_{N} G(x, w) G(y, w) dw \\ &+ D_{m,n} \varepsilon^{m-n} \int_{N} \langle G(x, w), G(y, w) \rangle_{*w} dw \end{split}$$

for any $x, y \in M \setminus N$. Here

$$C_{m,n} = 2(m-2)S_m S_n^{-1} B(n/2, (m-n-2)/2)^{-1},$$

 $D_{m,n} = 2S_m S_n^{-1} (B(n/2, (m-n)/2))^{-1}$

where B(p, q) denotes the beta function.

Fix $y \in M \setminus N$. Then it is easy to see that

$$\Delta_x Q_{\epsilon}(x, y) = 0 \qquad x \in M_{\epsilon}$$

and

$$Q_{\mathfrak{s}}(x, y) = 0 \qquad x \in \partial M$$

for any sufficiently small $\varepsilon > 0$. We want to estimate the absolute value of

$$Q_{\epsilon}(x, y)|_{x \in \partial \Gamma_{\epsilon}}$$

from above.

We have the following

Lemma 1. We assume that $m \ge n+5$. Let g be an arbitrary fixed smooth function on N. Fix an arbitrary $w^* \in N$. Then there exists a positive constant C independent of $w^* \in N$ such that

$$\left| \int_{N} \frac{g(w)}{|x-w|^{m-2}} dw - (S_n \cdot B(n/2, (m-n-2)/2)/2) \cdot g(w^*) \right|$$

$$\times |x-w^*|^{n-m+2} \Big| \le C|x-w^*|^{n-m+4}$$

holds when x tends to $w^* \in N$ along the normal directions to N at w^* with respect to M.

For any w and z contained in a fixed sufficiently small open neighbourhood of M, let $P(w \rightarrow z)$ denote the minimal geodesic curve starting from w through z.

Since we know the asymptotic properties of $G(x, w^*)$ and $\partial G(x, w^*)/\partial w_j$ $(j=n+1, \cdots, m)$ when x tends to w^* along the normal directions to N at w^* with respect to M, we see from $(2.1)_m$ and a variant of $(2.1)_{m+1}$ that

(2.2)
$$Q_{\epsilon}(x, y)|_{x=x_0\in\partial \Gamma_{\epsilon}} = -G(x, y)|_{x=x_0\in\partial \Gamma_{\epsilon}} + G(w^*, y) + \varepsilon \partial_{w\to x_0} G(w, y)|_{w=w^*} + O(\varepsilon^2)$$

holds for any sufficiently small $\varepsilon > 0$. Here $\partial_{w \to x_0}$ denotes the partial derivative along $P(w \to x_0)$ with respect to w.

Summing up these facts we get

$$Q_{\epsilon}(x, y)|_{x \in \partial \Gamma_{\epsilon}} = O(\varepsilon^2)$$

when ε tends to zero. Following Lemma 2 and the above estimate imply the desired result.

Lemma 2. Assume that $m-n\geq 3$. For an arbitrary fixed $\varepsilon>0$, let $u_{\varepsilon}(x)$ be the function harmonic in M_{ε} satisfying

$$u_{\mathfrak{s}}(x)|_{x\in\partial M}=0$$

$$u_{\mathfrak{s}}(x)|_{x\in\partial\Gamma_{\mathfrak{s}}}=1.$$

Then for any fixed $x \in M \setminus N$, we have $u_{\epsilon}(x) = O(\epsilon^{m-n-2})$ when $\epsilon \rightarrow 0$.

References

- [1] Ozawa, S.: Singular variation of domains and eigenvalues of the Laplacian (1980) (preprint).
- [2] Schiffer, M., and Spencer, D. C.: Functionals of Finite Riemann Surfaces. Princeton Univ. Press, Princeton (1954).