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Introduction. Let p be an odd prime, ¢, be a primitive p-th root
of unity and A be the p-Sylow subgroup of the ideal class group of
Q(,). In[5], Ribet obtained a remarkable theorem on the structure
of A as a Galois module by means of modular forms. We obtain a
generalization of this Ribet’s Theorem.

After this work had been finished, Prof. M. Koike kindly informed
the auther that he had obtained a result on the existence of modular
forms satisfying a certain congruence (Koike [8]). By using his de-
cisive result, he obtained a desirable generalization of our theorem.

Notations. For a prime p, let @, (resp. @) be an algebraic closure
of Q, (resp. @ and fix them. We fix embeddings Q—C and @—Q,,
through which we regard elements of @Q as elements of C or @,. Let
p be the prime of @, lying above p, corresponding to the fixed embed-
ding @Q—@,. For a finite abelian group G, let G=Hom (G, @%). For
a positive integer n, let ¢, be a primitive n-th root of unity in Q.

§1. Put m=5,7 or 11. Let p be an odd prime satisfying
(v, mp(m))=1, where ¢ is the Euler’s g-function. We use the following
notations: k=@ (cos (2z/m)), H=Gal (k/Q), K=k(,), G=Gal (K/Q).
Let o be the Dirichlet character modulo p satisfying e(a)=a mod p for
all integers a, (a,p)=1. For ¢¢ é, we identify ¢ with the primitive
Dirichlet character attached to ¢ by class field theory. Then

G={vo'|y e H, imod (p—1)}.

We say that ¢ € G is imaginary if ¢ (complex conjugation)=—1. Let
G- be the set of imaginary characters of G. For a positive integer 4
and for ¢ ¢ G, let B,(¢) be the i-th generalized Bernoulli number asso-
ciated with ¢. For g€ G, let ® be the Q,-irreducible character of a
representation of G which has ¢ as a @,-irreducible component. Then
the orthogonal idempotent e(®) attached to @ lies in the group ring
Z,[G] since (p, [K:QD=1. Let A be the p-Sylow subgroup of the
ideal class group of K. We regard A as an additive group on which
Z,[G] acts naturally.

Our main result is the following

Theorem 1. Let ¢cG-. Then B(y)=0modp if and only if
e(P)Ax0. In other words, let e B and let i be an even nteger with
2<i<p—1. Then B,(yv)=0mod p if and only if e(Tw' *)A =0, where
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Vo'~ is the Q,~irreducible character of G which has Vo' as ¢ Q,-
wrreducible component.

Remark 1. The first statement and the second one are equivalent
since 17'B;(v")=B,(v"'w*~Y) mod p (cf. 2.11 of [1]).

Remark 2. Note that e(@)A depends only on @ if we consider @
as the corresponding character of Gal (@/Q). Hence Ribet’s Theorem
is equivalent to the second statement in the case of =the trivial
character. To prove Theorem 1 we may assume that « is a primitive
Dirichlet character modulo .

Remark 3. The fact that e(@)A=2:0 implies B,(¢")=0mod p is a
result of the Stickelberger relations (cf. [3]).

§2. By Remark 2 in §1, we may assume that 4 is an even
primitive Dirichlet character whose conductor is m (=5,7 or 11).

Lemma 1. Let h,, be the imaginary factor (i.e. the first factor)
of the class number of Q(C,n). If v isa prime such that p=5 and pxm.
Then h,,<(dpm)(pm|24)*™/*,

Proof. By the class number formula, we have

(= (pm)* T] | =27 B = (pm)@pm) 7" [] "’Z ¢<a)af.

Here ¢ runs over all odd primitive Dirichlet characters whose con-
ductors divide pm. By the arithmetical-geometical mean inequality,

we have
(1 |z s@a )" <@lo@m) 32| % sl

By a calculation (cf. [4]), we obtain

@/eom) 3| T g@af = @/pom) 3 3 f@dblad

<6 'pm(pm—1)(pm—2)
—pm(pm—4p —4m){p(m—17°+m{p—1)}(p—-1 " (m—-1)"
<67 (pm)*.

Combining these estimations, we have Lemma 1.

We note that the norm of B,(y) from @ (values of ) to @ is 2*-5°!
(resp. 2¢.7°1, 28.5.117") if m=>5 (resp. 7,11). Hence we may assume
that 4<i<p—1. Put e=+"'0'"% Then ¢ is primitive and its con-
ductor is pm.

Asg in the proof of Theorem (3.3) of [5], we have:

Lemma 2. There exists a modular form of weight 2 and type ¢
on I'y(pm) whose Fourier-expansion coefficients are p-integers in Q and

whose constant term is 1.
Put

2

G (2) = —%Bz(e)+ > ( 5 e(d)d) exp v/ =Tnz).

n=1 \d|n,d>0
This is an Eisenstein series of weight 2 and type ¢ on I'y(pm). Note
that 2-'B,(e)=¢"'B,(+ ) =B,(v"'»*") mod .
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As in the proof of Proposition (3.5) of [5], we obtain the following

Theorem 2. Suppose that B,(v)=0mod p. Then there exists
o cusp form f of weight 2 and type ¢ on I'y(pm) which satisfies the fol-
lowing conditions:

i) f is a normalized common eigen-form for all Hecke operators.

i) f=G,, modp in Fourier-expansions.

§3. In this section, under the same assumption as in §2, we
regard ¢ (resp. ¢) as the character of Gal (@/Q) via the natural projec-
tion (resp. the reduction of ¢ i.e. the map x> ¢(x) mod p).

Theorem 3. Suppose that there exists a cusp form f satisfying
the conditions in Theorem 2. Then there exists a finite field FOF,
and a continuous representation

¢:Gal (Q/Q—GL (2, F)
which has the following properties:
1) Bloa @xy 8 unramified outside the set of primes of K lying
above p.

ii) @ is reducible over F in such a way that g is isomorphic to a

representation of the form
(o )
0o ¢/

iii) g is not diagonalizable.

iv) Let D be a decomposition group for p in Gal (Q/Q). Then
the order of p(D) is prime to p.

This theorem is proved by the same argument as in [5]. We note
the following points. (This theorem is known to specialists.)

1) Let X be an abelian variety attached to f (cf. [7, Theorem
7.14]). Then X has everywhere good reduction over the maximal real
subfield K* of K since ¢ is primitive and pm is square free (cf. [2,
Exemples 3.7, (iii)]).

2) Using the Tate module of X, we have a continuous represen-
tation of Gal (Q/Q) over a certain local field. This representation is
irreducible (cf. [6, Theorem (2.3)]).

3) Let E be the completion of K* at pNK*. Then its absolute
ramification index is (p—1)/2. Hence we can apply Proposition (4.3)
and Theorem (4.4) of [5].

Using Theorem 3, we obtain the following

Theorem 4. Suppose that there exists a cusp form f satisfying
the conditions in Theorem 2. Then e(P)A=x0.

Now we obtain Theorem 1 by using Remark 3 in § 1, Theorems 2
and 4.

§4. We have an application of Theorem 1. For ¢e G-, let L, be
the field generated by the values of ¢ over @,, O, be its integer ring
and p, be its maximal ideal. For ¢e G-, put n(g)=ord,, B,(¢™") if g0
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and n(w)=0.
Proposition. Under the same assumption as Theorem 1, if n(gp)
<1 for each ¢ € é‘, then e(@)A is isomorphic to O,/ p3® for each ¢ € G-.
This proposition is proved by using Theorem 1, the class number
formula and the Stickelberger relations (cf. [3]).
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