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33. Ultradifferentiability of Solutions of Ordinary
Differential Equations

By Hikosaburo KOMATSU
Department of Mathematics, University of Tokyo

(Communicated by Kosaku Yosipa, M. J. A., April 12, 1980)

Let M,, p=0,1,2, - .-, be a sequence of positive numbers. An in-
finitely differentiable function f on an open set 2 in R” is said to be an
ultradiff erentiable function of class {M,} (resp. of class (M,)) if for
each compact set K in £ there are constants % and C (resp. and for
each 2>0 there is a constant C) such that

sgII{)|D“f(x)|§Ch'“'M,al, la|=0,1,2, ---.

We assume that M, satisfies the following conditions:

(1) M,=M,=1;

(2) M, /gD P <(M,/p V>,  2=q=<p,

and furthermore in case of class (M)
() v

@ () =eslless) e

and

(4) M,/(®M,_)—co  as p—oo.

We consider the initial value problem of ordinary differential
equation

dx _
(5) {m‘_f(t’ x),

z(0) =y,

where f(t,x2)=(f,, --+,f,) is an n-tuple of functions defined on
(=T, T)x 9 with a T>0 and an open set 2 in R". We assume the
Lipschitz condition in . Then for each relatively compact open sub-
set 9, of 2 thereis a 0<T,<T such that (5) has for each ¥ € 2, a unique
solution x=x(t, ) on the interval (—T,, T,).

Our main result is the following

Theorem. If all components of f(t,x) are ultradifferentiable
functions of class {M,} (resp. of class (M,)) on (—T,T)XQ2, then the
components of the solution x(t, y) are also ultradiff erentiable functions
of class {M,} (resp. of class (M,)) on (—T,, T)X R2,.

Hereafter we denote by * either {M,} or (M,). The theorem is
proved in two steps.

Proposition 1. If f(i, x) s ultradifferentiable of class x only in
x but uniformly in t, then x(t,y) is ultradifferentiable of class x in y
uniformly in t.
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The proof in the case of class (M,) is reduced to the case of class
{M,} by Lemma 6 of [2]. Therefore we may restrict ourselves to the
latter case.

We employ the method of Leray-Ohya [3] when they proved the
ultradifferentiability of the Gevrey class {p!*} for solutions of hyper-
bolic equations.

Let

> F (t) Xp

be a formal power series in X W1th coeﬁic1ents F,(t) which are func-
tions in t. We write

(6) f(t,x)§<F(t,X), tel,

if every component f, of f satisfies
|Dsf(t, x)i§F|al(t), zef, |a|=0,1,2,.
forall tel. Let
o, v)=3 2B yauy g
=0 q!
be another formal power series in Y. Then we define

Ft, 0, Y)=5, Fp(t)(n@a Y)—0(t, 0)))".

If x2(t, y) is an n-tuple of functions on I x 2, with values in 2 such
that

(7) x(t, y)<<¢(t Y), tel,
and if (6) holds, then we have
(8) J@@, x(t, 'y))<<F(t 2(t,Y)), tel.

Lemma 1. Suppose that (6) holds for I=[0,T,. If @,Y)
satisfies

OCY) s me ok, Y), tel,

(9) ot

20,Y)>Y,
then the solution x(t,y) of (5) is majorized as
(10) (¢, y)<<@(t Y), tel.

Proof. The solution x(t y) is obtained as the limit of Picard’s
approximation:
z(t, Y=Y

xk+l(t$ ?/)=?/+J: f(s, xk(s, ’,I/))ds.

Clearly we have
(¢, N=y< Y«0t,Y), tel

Suppose that
v (t, KO, Y), tel.
2,
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Then we have
2t DY+ [ Fls, 06, Y)As< O, Y),  tel.
1 0
Since Djx,(t,y) converges to D;x(t,y), we have (10). The con-
vergence itself may also be proved by the majorant method as above.
By shrinking (— 7, T) and £ if necessary we can take

a1 F(t, X)=C ;0 ZX{ (%X)”

with constants 2 and C.
Suppose that M,=p!. Then

F(t, 0(t, Y))= ¢

1—h@D(t, Y)—0(¢,0)
Hence 9(t, Y) is obtained as a solution of

ob(t,Y) c
12) { ot  1+Cht—ho,Y)’
00,Y)=Y.
Since @(t, Y) is majorized for ¢=0 by the solution
1 1 . 2Ct

(13) v, Y)_%—J(—E—Y) — 2t

of
ut,Y) C

(14) { ot  1-hw¥tY)’
r0,Y)=Y,

we can find for any T,<<(2Ch)~! constants & and B such that
o,)<Bk%q!, 0Zt<T, ¢=0,1,2,..-.

In the general case we obtain a solution @(¢, Y) of (9) by multiply-
ing the coefficient of Y? in the solution of (12) by M?/p!, so that we
have
15) o,)<BkM,, 0<t<T, ¢=0,1,2,....

In fact, let o(t, Y)=0({, Y)—Ct, where @(f,Y) is the solution of
(12). 'Then it is the limit of Picard’s approximation

oot V)=Y,

ounlt, V) =Y + cj Z‘”l (hou(s, Y))?ds.
0p=
In general suppose that

i d.(B)Y = ,,i(hqil cq(t)Y")p.

Then the coefficient
- MP » M M
t 91, .. )
p=1 p! b ‘11+"§‘117=7ch( ) Q1! cqp(t) qp!

of Y"in
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& M 3 M, q>”
;:1 p'p( qZ=:10q(t) q! ¥

is less than or equal to d,(£)M,/r! because it follows from (2) that
M, M, M, M,
p! q,! g,! !
Therefore if we multiply the coefficient of Y in ¢,(¢,Y) by M,/q!
and denote it again by ¢.(¢, Y), we have
§00(t9 Y) = Yr
t oo
ounit, D> Y40 [ 53 B (s, yas.
b= H
Hence 9(¢, Y)=Ilim ¢, (¢, Y)+ Ct satisfies (9).
koo
In view of Lemma 1 the estimates (15) prove Proposition 1 for
sufficiently small T',. If T,>T,, we solve the equation with initial data
at t=T, Since composites of ultradifferentiable mappings of class x
are ultradifferentiable of class * under condition (2), we obtain Propo-
sition after a finite number of repetitions.
The proof of the theorem will be completed if we show that a solu-
tion (¢, v) of
dx
16 —=f,
(16) it J@, )
with parameters v is ultradifferentiable of class = in ¢ and y if it is
ultradifferentiable in ¥ uniformly in ¢.
Since the infinite differentiability in ¢ and v is easy to prove, we
need only to estimate D/Dzx(t,, y) for each fixed ¢, The formal Taylor
expansion

— - aj:‘t’(too 2/) (t—to)j
satisfies equation (16) as a formal power series in t—¢, with infinitely
differentiable functions of y as coefficients.
Thus the proof is reduced to the following proposition of the
Cauchy-Kowalevsky type.
Proposition 2. If a formal power series

® —t+Y
2ty =3 20 @) L8
=0 7!

i t—t, with C> coefficients satisfies equation (16) and if the initial
value x(y) is ultradiff erentiable of class x on 2,, then x,(t, v) is ultra-
differentiable of class x in the sense that for each compact set K in £,
there are constants l and A (resp. and for each 1>0 there is a constant
A) such that

sup | D5 @) | S AV M,y el 1=0,1,2, -+,

Y

The constants 1 and A (resp. constant A) depend only on the ultra-
differentiability of x(y) and are independent of ¢,.



No. 4] Ultradifferentiability of Solutions 141

Again we may restrict ourselves to the case of class {M,}.
Suppose that
ft o) « FX=3 Fox

{to}x 2 p=0 P
in the sense that
ID{Dgfi(toax)]_S_Fﬂlal’ (UG.Q, j»l“lzo» 1’2’ ]
and that
2, (t, y) < O(Y).

{to}x 21
Then we have

S 2t < F@)
—Z 2 (Y+n(@(Y)—0(0)".

Hence we obtain the followmg lemma as in [2].

Lemma 2., If
do(Y)

amn ——d~Y—>>F(@(Y)),
and

(18) ¢(7)§>x‘°’(y),
then

19 2, (¢, y) << (7).

to} X 21

In case M,=p! we can take F(X)=C1—hX)* with constants &
and C. Therefore the equation for o(Y)=0(Y)—@(0)+ Y /n becomes

dp(Y) _ C 1
dY  1—nhe(Y) ’
©(0)=0.

In view of (13) the solution is majorized as
—L(l—x/l—ZnhCY)<<go(I7’)<<—1§];(1~—4/1—2nh0’7),

where C’=C+1/n. Hence if we take 2 and C sufficiently large,

= BEY Y
Y .|. el
ol )>> —kY
so that (18) holds. On the other hand (19) implies

A
t,
W) < 07

for some constants [ and A.

The reduction of the general case to the above is similar to Propo-
sition 1.

Combining Theorem with the implicit function theorem in [1], we
obtain the Frobenius theorem for ultradifferentiable manifolds of
class .
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