No. 3] Proc. Japan Acad., 55, Ser. A (1979) 95

23. Rational Maps to Varieties of Hyperbolic Type®

By Ryuji TSUSHIMA
Department of Mathematics, Faculty of Science, Gakushuin University

(Communicated by Kunihiko KODAIRA, M. J. A.,, March 12, 1979)

§0. Introduction. In this paper we prove a finiteness theorem
for the set of dominant rational maps to a variety of hyperbolic type.
Let & be an algebraically closed field of characteristic zero. In this
paper we assume all varieties are defined over k.

First we recall the definition of the Kodaira dimension. Let X
be a smooth algebraic variety, then by Nagata and Hironaka there
exists a complete smooth algebraic variety X such that Dy:=X—X is
a divisor with normal crossings. Let Ky be the canonical divisor of
X and @,, the rational map of X which is associated with the linear
system |[m(Kg-+Dy)|.

Definition 1 ([3] and [4]). The logarithmic Kodaira dimension
#(X) of X is
{sup dim &,(X), if |m(Kz+ Dy)|#(0) for some m ¢ N,

m>0
— o0 , if |m(Kg+Dy)|=(0) for every m € N.
If X is complete, #(X) is denoted by x(X) and is called the Kodaira
dimension of X. X is said to be of elliptic type, of parabolic type,
and of hyperbolic type, if #(X)=—o0, 0, and dim (X), respectively.
Algebraic varieties of hyperbolic type are also called of general type.

This notion of hyperbolicity is different from that of [5]. But
it is known that a smooth algebraic variety of hyperbolic type is
measure-hyperbolic in the sense of [5] (cf. [8]). The Kodaira dimen-
sion is an important bi-rational invariant to classify algebraic varieties
(cf. [10D).

Definition 2. Let X and Y be algebraic varieties. A rational
map f: X—Y is said to be a strictly rational map, if there exists a
proper bi-rational morphism z: X’—X such that for is a morphism.
S is said to be dominant, if dim (fox)(X")=dim (Y).

Our main theorem is as follows:

Theorem. Let X be a smooth algebraic variety and Y a smooth
algebraic variety of hyperbolic type. Then the set of dominant
strictly rational maps of X to Y is finite.

The following varieties are examples of varieties of hyperbolic
type.

*  This is a shorter version of the master thesis submitted by the author in
February 1977 to the University of Tokyo.




96 R. TSUSHIMA [Vol. 55(A),

Example 1. Let D be a hypersurface with normal crossings of
P" with degree =n+2. Then P"— D is of hyperbolic type.

Example 2. Let 9 be a bounded symmetric domain and I" a dis-
crete arithmetic subgroup of the group of bi-holomorphic automor-
phismof 9. Then 9/ is an algebraic variety (cf. [1]). If, moreover,
I" has no torsion element, then 9/I" is of hyperbolic type (cf. [9]).

Kobayashi and Ochiai proved the following theorem in [6].

Theorem. Let X be a compact complex manifold and Y a com-
pact complex manifold of general type. Then the set of dominant
meromorphic maps of X to Y is finite.

Moreover Iitaka and Sakai proved the following theorem in [4]
and [8].

Theorem. Let X be a smooth algebraic variety of hyperbolic
type. Then the set of strictly bi-rational maps: X—X is finite.

Our theorem can be seen as a generalization of these theorems.

I thank Prof. S. Iitaka for valuable discussions.

§1. Preliminary. Let X, (i=1,2) be a smooth algebraic variety
which is an open subset of a complete smooth algebraic variety X,
such that D,:=X,—X, is a divisor with normal crossings. The
sheaf of germs of logarithmic ¢-forms on X, along D, is defined as in
[21, which we denote by 2¢(log D,).

Lemma 1 (cf. [4]). Let f: X,—X, be a strictly rational map and
m a positive integer. And let f : X,—X, be the extension of f. Then
if we I'(X,, (2%(log D,)®™), f*(w) € I'(X,, (2%(log D)))®™).

Let X and Y be as in the Theorem. In §§1 and 2, we assume
that dim (X)=dim (Y)=n. Let X (resp. Y) be a complete algebraic
variety which contains X (resp. Y) as its open subset such that
Dy:=X—X (resp. Dy:=Y—Y) is a divisor with normal crossings.

To prove the theorem we may assume that X and Y are projective.
If it is not the case, let 7y : X’—X (resp. ny: Y'—Y) be a bi-rational
morphism such that X’ (resp. Y’) is projective and zz%(Dy) (resp. 73'(Dy))
is a divisor with normal crossings. Then z7(Y) is of hyperbolic type
by Lemma 1, and if f: X—Y is a strictly rational map, (zy.;1r) "o f
o xi.5txy 1S also a strictly rational map, since a composition of strictly
rational maps is a strictly rational map. We replace X (resp. Y) by
a74(X) (resp. 77%(Y)) and X (resp. Y) by X’ (resp. Y').

Let Ky (resp. Ky) be the canonical divisor of X (resp. Y). The
linear system |m(Kz+Dy)| (resp. |m(Ky—+Dy)]) is canonically identified
with I'(X, (2"(og Dy))®™) (resp. I'(Y, (2*(log Dy))®™). Let f: X—Y be
a strictly rational map and f : X—7Y its extension. Then the follow-
ing condition (*) holds by Lemma 1.

*) If we|m(Ky+Dy)|, f*(w) €| m(Kz+Dy)|.
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Let R be the set of dominant rational maps of X to Y which satisfy
the condition (*). It suffices to prove that R is finite. If feR,
S*:1m(Ky + Dy)|—|m(Kz+Dy)| is injective, since f is dominant.
Hence if R+0, X is also of hyperbolic type. We assume that R+0.

There exists a positive integer m such that the rational map of X
which is associated with |m(Ky+Dy)| is bi-rational to its image. Fur-
thermore we can take a positive integer m so that the following con-
dition (**) also holds (cf. [6]).

(**) There exists an effective divisor C on Y such that the linear
system |m(Ky-+Dy)—C]| is very ample.

We fix this m throughout §§1 and 2. Put
Vy:i=|m(Ky+Dy|,
y:=|m(Ky+Dy)—C|,
H:=Hom (Vy, Vy)V (¥ means the dual).

Let i, be the rational map of X to P(Vy) which is associated with
Vy and i, the embedding of Y to P(Vy) which is associated with Vy.
If feR, f*: Vy—Vy determines a point fV of P(H), since f* is not
zero. There follows the commutative diagram below.

P (VX) 77P (VY)
1x 1y
X —J) Y

Lemma 2. Let f,geR. If fV=gV, then f=g.

Proof. Since iy is bi-rational and i, is an embedding.

§2. Proof of the finiteness of R. Let F: P(Vy) X P(H)—P(Vy)
be the rational map which is determined by the morphism: VyxX H
—Vy. For a rational map f we denote by Ind (f) the set of points of
indeterminacy of f. Let T be an algebraic variety and G: XX T—Y
a rational map which satisfies the following condition (***).

(***¥) X x{t}—1Ind (@ is a non-empty open subset of X for every
teT.

Then we denote by X, X x{t} and by G, the restriction of G to X,.
If he P(H), Ind (F)NPWVy) x{h} is a linear subspace of P(Vy) X {h}.
Since ix(X) is not contained in a hyperplane of P(Vy), the restric-
tion of F, to ix(X) X P(H) satisfies the similar condition to (***). F':
=Fyo(iy Xidpg,) is a rational map of X X P(H) to P(Vy) satisfying (***).

The following two lemmas can be proved easily.

Lemma 3. Let H, be the subset of P(H) such that he H, if and
only if F,(X,)Ciy(Y). Then H, is a closed subset of P(H).

Lemma 4. Let H, be the subset of H, such that h e H, belongs to
H, if and only if F,, is dominant. Then H, is an open subset of H,.

Lemma 5. Let T be an algebraic variety and G: XxXT—Y a
strictly rational map satisfying (***) such that G, is dominant for
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every teT. And let w be an element of Vy and T, the subset of T
such that t e T belongs to T, if and only if G¥(w)eVy. Then T, is a
closed subset of T.

Proof. Letp: T—T be a desingularization of Tand G = Go(idg X D).
It sufficies to prove that 7', is closed subset of T, since p is proper.
Let A"(T%.p) and A™(T%) be the vector bundle of n-forms on X x 7 and
T respectively. There exists an exact sequence of vector bundles ;

0—>DE AT —> AUThxp)—> N (T c2/2)—>0.
N (T%z/7) is isomorphic to the pull back of the canonical line bundle
of X by p,: Xx T—X.

G*(w) is a rational section of (A™(TH.r)®™ and z°™(G*(w)) is a
rational section of (A™(T%.z,2))®™, where = is as in the sequence above.
We may assume that w+0. Let E and F be the divisor of zeros and
poles of 7®m(G*(w)) respectively, and E, and F, the restriction of E and
F to X, respectively. Leti,: X,—X x T be the inclusion. Since G, is
dominant, X,—Ind (&)—G;Y(Dy) is a non-empty open subset of X,.
On X,—Ind (G)—G;(Dy) it holds that &}(x®™(G*(@)))=G¥(w). Hence
E,F,CX,.

Now we prove the assertion by an induction on dim (7). Let S
be the subset of T such that ¢t e T belongs to S if and only if dim (&,
NF)=n—1. Then S is closed by the semi-continuity of dim (E,NF,).
By the assumption of the induction, S, is a closed subset of S, hence
of T.

By Lemma 6 below, F, (t ¢ T) constitute a flat family of divisors.
Hence there exists a morphism g of T to the Hilbert scheme of X such
that g(¢) is the point corresponding to F',. Let Dy=>Y, D! be the
irreducible decomposition of Dy. And let A={a=(aj,, a, ---,ax); a;
e Z and 0<a,<m}, and p, (a € A) the point of the Hilbert scheme of
X which corresponds to the divisor 3%, a,D?. Then it is easily seen
that T, =g '({Po}ac ) US,. Hence T, is closed in 7.

Lemma 6 ([7, §20 F Corollary 1]1). Let A be a Noetherian ring,
B a Noetherian A-algebra, M a finite B-module, and fe B. Assume
that

(i) M is A-flat.

(i) For any maximal ideal P of B, f is M /(PN A)M-regular.
Then f is M-regular and M/fM is A-flat.

Let H,=\,cv, (H))., then H, is a closed subset of H,. R is mapped
injectively to H, by the correspondence: f— fV. Let H,be the closure
of H, in P(H), and q: H,—~H, a desingularization of H, such that
q '(H,—H,) is a divisor with normal crossings. And let F’:lems
o(idg X q) be the rational map of Xx H, to Y.

Let H, be the subset of H, such that & e H, belongs to H, if and
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only if F,(X,)CDy. It is easily seen that H, is a closed subset of i
Let » be an element of Vy. If ke H,, F*(v) is defined on X, and coin-
cides with i*(z®™(#*(»))) on a non-empty open subset of X, as in the
proof of Lemma 5. F%(«w) is not defined if e H,. But we can prove
that i*(z®"(F*(w))) is defined and contained in ¥y even if ke H,.

Lemma 7. #&@®(F*(w))) € Vy.

Proof. By Lemma 1 and the definition of H,, F*(w) is a logarith-
mic m-ple n-form on X X H ; along Dy X H,Up;Y(H,). Hence 72 ()
is a logarithmic form along D Xxﬁ 5, hence ¥ (@®(F™*(w))) is a logarith-
mic form along Dy.

Thus we constructed a linear map f,,: Vy—Vy for h e FIg, hence a
morphism ¢: H,—H such that o(h)=fY. Since H ; is complete and H
is affine, Im (¢) is finite. If he H,, ¢(h)V: Vy—Vy coinsides with F'},, :
Vy—Vy. Therefore the image of the map « of H; to H: h—F} is
finite. Now it follows that H, is finite, since + is injective as in Lemma
2, which proves that R is finite.

§3. The case dim (X)>dim (Y). In this section we prove the
theorem in the case dim (X)>dim (Y). Assume that there exist infinite
dominant strictly rational maps f, (¢=1,2, ---) of X to Y. Then by
[6] there exists a subvariety X, of X such that all f, i=1,2, -.-) are
defined and distinct on X, f, x, are dominant, and dim (X,)=dim (Y).
This contradicts to the result of § 2.

§4. In analytic categories. Let X be a complex manifold such
that there exists a compact complex space which contains X as its
Zariski open subset. Then the logarithmic Kodaira dimension of X
is defined as in the case of algebraic varieties. Then by the similar
method as before we can prove the following:

Theorem. Let X be a complexr manifold which X is a Zariski
open subset of o Moishezon manifold X and Y a complex manifold
which Y is o Zariski open subset of a compact complex manifold
Y. Thenif Y is of hyperbolic type, the set of dominant meromorphic
maps of X to Y which are extended to meromorphic maps of X to Y
18 finite.

We need the assumption that X is a Moishezon manifold for the
existence of an analytic subspace of X such as X, in § 3.

A dominant holomorphic map of X to Y is extended to a mero-
morphic map of X to Y (cf. [8]). Hence the set of dominant holomor-
phic maps of X to Y is finite.
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