23. Rational Maps to Varieties of Hyperbolic Type*

By Ryuji Tsushima

Department of Mathematics, Faculty of Science, Gakushuin University (Communicated by Kunihiko Kodaira, M. J. A., March 12, 1979)

§ 0. Introduction. In this paper we prove a finiteness theorem for the set of dominant rational maps to a variety of hyperbolic type. Let k be an algebraically closed field of characteristic zero. In this paper we assume all varieties are defined over k.

First we recall the definition of the Kodaira dimension. Let X be a smooth algebraic variety, then by Nagata and Hironaka there exists a complete smooth algebraic variety \overline{X} such that $D_X := \overline{X} - X$ is a divisor with normal crossings. Let K_X be the canonical divisor of \overline{X} and Φ_m the rational map of \overline{X} which is associated with the linear system $|m(K_X + D_X)|$.

Definition 1 ([3] and [4]). The logarithmic Kodaira dimension $\bar{\kappa}(X)$ of X is

$$\{\sup_{m>0}\dim arPhi_m(\overline{X}), ext{ if } |m(K_{oldsymbol{X}}\!+\!D_{oldsymbol{X}})|\!
eq\!(0) ext{ for some } m\in oldsymbol{N}, \ -\infty \qquad ext{, if } |m(K_{oldsymbol{X}}\!+\!D_{oldsymbol{X}}\!)|\!=\!(0) ext{ for every } m\in oldsymbol{N}.$$

If X is complete, $\bar{\kappa}(X)$ is denoted by $\kappa(X)$ and is called the Kodaira dimension of X. X is said to be of elliptic type, of parabolic type, and of hyperbolic type, if $\bar{\kappa}(X) = -\infty$, 0, and dim (X), respectively. Algebraic varieties of hyperbolic type are also called of general type.

This notion of hyperbolicity is different from that of [5]. But it is known that a smooth algebraic variety of hyperbolic type is measure-hyperbolic in the sense of [5] (cf. [8]). The Kodaira dimension is an important bi-rational invariant to classify algebraic varieties (cf. [10]).

Definition 2. Let X and Y be algebraic varieties. A rational map $f: X \rightarrow Y$ is said to be a strictly rational map, if there exists a proper bi-rational morphism $\pi: X' \rightarrow X$ such that $f \circ \pi$ is a morphism. f is said to be dominant, if $\dim(f \circ \pi)(X') = \dim(Y)$.

Our main theorem is as follows:

Theorem. Let X be a smooth algebraic variety and Y a smooth algebraic variety of hyperbolic type. Then the set of dominant strictly rational maps of X to Y is finite.

The following varieties are examples of varieties of hyperbolic type.

^{*} This is a shorter version of the master thesis submitted by the author in February 1977 to the University of Tokyo.

Example 1. Let D be a hypersurface with normal crossings of P^n with degree $\geq n+2$. Then P^n-D is of hyperbolic type.

Example 2. Let \mathcal{D} be a bounded symmetric domain and Γ a discrete arithmetic subgroup of the group of bi-holomorphic automorphism of \mathcal{D} . Then \mathcal{D}/Γ is an algebraic variety (cf. [1]). If, moreover, Γ has no torsion element, then \mathcal{D}/Γ is of hyperbolic type (cf. [9]).

Kobayashi and Ochiai proved the following theorem in [6].

Theorem. Let X be a compact complex manifold and Y a compact complex manifold of general type. Then the set of dominant meromorphic maps of X to Y is finite.

Moreover Iitaka and Sakai proved the following theorem in [4] and [8].

Theorem. Let X be a smooth algebraic variety of hyperbolic type. Then the set of strictly bi-rational maps: $X \rightarrow X$ is finite.

Our theorem can be seen as a generalization of these theorems. I thank Prof. S. Iitaka for valuable discussions.

§ 1. Preliminary. Let X_i (i=1,2) be a smooth algebraic variety which is an open subset of a complete smooth algebraic variety \overline{X}_i such that $D_i := \overline{X}_i - X_i$ is a divisor with normal crossings. The sheaf of germs of logarithmic q-forms on \overline{X}_i along D_i is defined as in [2], which we denote by $\Omega^q(\log D_i)$.

Lemma 1 (cf. [4]). Let $f: X_1 \to X_2$ be a strictly rational map and m a positive integer. And let $\overline{f}: \overline{X}_1 \to \overline{X}_2$ be the extension of f. Then if $\omega \in \Gamma(\overline{X}_2, (\Omega^q(\log D_2))^{\otimes m})$, $\overline{f}^*(\omega) \in \Gamma(\overline{X}_1, (\Omega^q(\log D_2))^{\otimes m})$.

Let X and Y be as in the Theorem. In §§ 1 and 2, we assume that $\dim(X) = \dim(Y) = n$. Let \overline{X} (resp. \overline{Y}) be a complete algebraic variety which contains X (resp. Y) as its open subset such that $D_X := \overline{X} - X$ (resp. $D_Y := \overline{Y} - Y$) is a divisor with normal crossings.

To prove the theorem we may assume that \overline{X} and \overline{Y} are projective. If it is not the case, let $\pi_X \colon \overline{X}' \to \overline{X}$ (resp. $\pi_Y \colon \overline{Y}' \to \overline{Y}$) be a bi-rational morphism such that \overline{X}' (resp. \overline{Y}') is projective and $\pi_X^{-1}(D_X)$ (resp. $\pi_Y^{-1}(D_Y)$) is a divisor with normal crossings. Then $\pi_Y^{-1}(Y)$ is of hyperbolic type by Lemma 1, and if $f \colon X \to Y$ is a strictly rational map, $(\pi_{Y|\pi_Y^{-1}(Y)})^{-1} \circ f \circ \pi_{X|\pi_X^{-1}(X)}$ is also a strictly rational map, since a composition of strictly rational maps is a strictly rational map. We replace X (resp. Y) by $\pi_X^{-1}(X)$ (resp. $\pi_Y^{-1}(Y)$) and \overline{X} (resp. \overline{Y}) by \overline{X}' (resp. \overline{Y}').

Let $K_{\overline{X}}$ (resp. $K_{\overline{Y}}$) be the canonical divisor of \overline{X} (resp. \overline{Y}). The linear system $|m(K_{\overline{X}}+D_{\overline{X}})|$ (resp. $|m(K_{\overline{Y}}+D_{\overline{Y}})|$) is canonically identified with $\Gamma(\overline{X}, (\Omega^n(\log D_{\overline{X}}))^{\otimes m})$ (resp. $\Gamma(\overline{Y}, (\Omega^n(\log D_{\overline{Y}}))^{\otimes m})$). Let $f: X \to Y$ be a strictly rational map and $\overline{f}: \overline{X} \to \overline{Y}$ its extension. Then the following condition (*) holds by Lemma 1.

(*) If $\omega \in |m(K_{\overline{Y}} + D_{Y})|$, $\bar{f}^*(\omega) \in |m(K_{\overline{X}} + D_{X})|$.

Let R be the set of dominant rational maps of \overline{X} to \overline{Y} which satisfy the condition (*). It suffices to prove that R is finite. If $f \in R$, $f^*: |m(K_{\overline{Y}} + D_{\overline{Y}})| \rightarrow |m(K_{\overline{X}} + D_{\overline{X}})|$ is injective, since f is dominant. Hence if $R \neq \emptyset$, X is also of hyperbolic type. We assume that $R \neq \emptyset$.

There exists a positive integer m such that the rational map of \overline{X} which is associated with $|m(K_x+D_x)|$ is bi-rational to its image. Furthermore we can take a positive integer m so that the following condition (**) also holds (cf. [6]).

(**) There exists an effective divisor C on \overline{Y} such that the linear system $|m(K_{\overline{Y}}+D_{\overline{Y}})-C|$ is very ample.

We fix this m throughout §§ 1 and 2. Put

$$\begin{split} &V_{\scriptscriptstyle X}\!:=\!|m(K_{\scriptscriptstyle X}\!+\!D_{\scriptscriptstyle X})|,\\ &V_{\scriptscriptstyle Y}\!:=\!|m(K_{\scriptscriptstyle Y}\!+\!D_{\scriptscriptstyle Y})\!-\!C|,\\ &H\!:=\!\operatorname{Hom}(V_{\scriptscriptstyle Y},V_{\scriptscriptstyle X})^{\vee}\;(^{\vee}\;\text{means the dual}). \end{split}$$

Let i_X be the rational map of \overline{X} to $P(V_X)$ which is associated with V_X and i_Y the embedding of \overline{Y} to $P(V_Y)$ which is associated with V_Y . If $f \in R$, $f^* : V_Y \to V_X$ determines a point f^\vee of P(H), since f^* is not zero. There follows the commutative diagram below.

$$P(V_X) \xrightarrow{f^{\vee}} P(V_Y)$$

$$\uparrow^{i_X} \qquad \uparrow^{i_Y}$$

$$X \xrightarrow{f} Y .$$

Lemma 2. Let $f, g \in R$. If $f^{\vee} = g^{\vee}$, then f = g.

Proof. Since i_x is bi-rational and i_y is an embedding.

- § 2. Proof of the finiteness of R. Let $F_0: P(V_X) \times P(H) \to P(V_Y)$ be the rational map which is determined by the morphism: $V_X \times H \to V_Y$. For a rational map f we denote by Ind (f) the set of points of indeterminacy of f. Let T be an algebraic variety and $G: \overline{X} \times T \to \overline{Y}$ a rational map which satisfies the following condition (***).
- (***) $\overline{X} \times \{t\}$ Ind (G) is a non-empty open subset of \overline{X} for every $t \in T$.

Then we denote by $\overline{X}_t \, \overline{X} \times \{t\}$ and by G_t the restriction of G to \overline{X}_t . If $h \in P(H)$, Ind $(F_0) \cap P(V_X) \times \{h\}$ is a linear subspace of $P(V_X) \times \{h\}$. Since $i_X(\overline{X})$ is not contained in a hyperplane of $P(V_X)$, the restriction of F_0 to $i_X(\overline{X}) \times P(H)$ satisfies the similar condition to (***). $F: = F_0 \circ (i_X \times id_{P(H)})$ is a rational map of $\overline{X} \times P(H)$ to $P(V_Y)$ satisfying (***).

The following two lemmas can be proved easily.

Lemma 3. Let H_1 be the subset of P(H) such that $h \in H_1$ if and only if $F_h(\overline{X}_h) \subset i_Y(\overline{Y})$. Then H_1 is a closed subset of P(H).

Lemma 4. Let H_2 be the subset of H_1 such that $h \in H_1$ belongs to H_2 if and only if F_h is dominant. Then H_2 is an open subset of H_1 .

Lemma 5. Let T be an algebraic variety and $G: \overline{X} \times T \rightarrow \overline{Y}$ a strictly rational map satisfying (***) such that G_t is dominant for

every $t \in T$. And let ω be an element of V_X and T_{ω} the subset of T such that $t \in T$ belongs to T_{ω} if and only if $G_t^*(\omega) \in V_X$. Then T_{ω} is a closed subset of T.

Proof. Let $p: \tilde{T} \to T$ be a desingularization of T and $\tilde{G} = G \circ (id_{X} \times p)$. It sufficies to prove that \tilde{T}_{ω} is closed subset of T, since p is proper. Let $\bigwedge^{n}(T_{X \times T}^{*})$ and $\bigwedge^{n}(T_{T}^{*})$ be the vector bundle of n-forms on $\overline{X} \times \tilde{T}$ and \tilde{T} respectively. There exists an exact sequence of vector bundles;

 $0 \longrightarrow p_2^*(\bigwedge^n(T_I^*)) \longrightarrow \bigwedge^n(T_{X\times T}^*) \xrightarrow{\pi} \bigwedge^n(T_{X\times T/T}^*) \longrightarrow 0.$ $\bigwedge^n(T_{X\times T/T}^*) \text{ is isomorphic to the pull back of the canonical line bundle of } \overline{X} \text{ by } p_1 \colon \overline{X} \times \widetilde{T} \to \overline{X}.$

 $ilde{G}^*(\omega)$ is a rational section of $(\bigwedge^n (T^*_{X \times T}))^{\otimes m}$ and $\pi^{\otimes m}(\tilde{G}^*(\omega))$ is a rational section of $(\bigwedge^n (T^*_{X \times T/T}))^{\otimes m}$, where π is as in the sequence above. We may assume that $\omega \neq 0$. Let E and F be the divisor of zeros and poles of $\pi^{\otimes m}(\tilde{G}^*(\omega))$ respectively, and E_t and F_t the restriction of E and F to \overline{X}_t respectively. Let $i_t \colon \overline{X}_t \to \overline{X} \times \tilde{T}$ be the inclusion. Since \tilde{G}_t is dominant, $\overline{X}_t = \operatorname{Ind}(\tilde{G}) = \tilde{G}_t^{-1}(D_Y)$ is a non-empty open subset of \overline{X}_t . On $\overline{X}_t = \operatorname{Ind}(\tilde{G}) = \tilde{G}_t^{-1}(D_Y)$ it holds that $i_t^*(\pi^{\otimes m}(\tilde{G}^*(\omega))) = \tilde{G}_t^*(\omega)$. Hence $E_t, F_t \subseteq \overline{X}_t$.

Now we prove the assertion by an induction on dim (T). Let S be the subset of \tilde{T} such that $t \in \tilde{T}$ belongs to S if and only if dim $(E_t \cap F_t) \ge n-1$. Then S is closed by the semi-continuity of dim $(E_t \cap F_t)$. By the assumption of the induction, S_ω is a closed subset of S, hence of \tilde{T} .

By Lemma 6 below, F_t $(t \in \tilde{T})$ constitute a flat family of divisors. Hence there exists a morphism g of \tilde{T} to the Hilbert scheme of \overline{X} such that g(t) is the point corresponding to F_t . Let $D_X = \sum_{i=1}^N D^i$ be the irreducible decomposition of D_X . And let $A = \{a = (a_1, a_2, \cdots, a_N) ; a_t \in \mathbb{Z} \text{ and } 0 \leq a_i \leq m\}$, and p_a $(a \in A)$ the point of the Hilbert scheme of \overline{X} which corresponds to the divisor $\sum_{i=1}^N a_i D^i$. Then it is easily seen that $\tilde{T}_a = g^{-1}(\{p_a\}_{a \in A}) \cup S_a$. Hence \tilde{T}_a is closed in \tilde{T} .

Lemma 6 ([7, § 20 F Corollary 1]). Let A be a Noetherian ring, B a Noetherian A-algebra, M a finite B-module, and $f \in B$. Assume that

- (i) M is A-flat.
- (ii) For any maximal ideal P of B, f is $M/(P \cap A)M$ -regular. Then f is M-regular and M/fM is A-flat.

Let $H_3 = \bigcap_{w \in V_X} (H_2)_w$, then H_3 is a closed subset of H_2 . R is mapped injectively to H_3 by the correspondence: $f \mapsto f^{\vee}$. Let \overline{H}_3 be the closure of H_3 in P(H), and $q: \tilde{H}_3 \to \overline{H}_3$ a desingularization of \overline{H}_3 such that $q^{-1}(\overline{H}_3 - H_3)$ is a divisor with normal crossings. And let $\tilde{F} = F|_{X \times \overline{H}_3} \circ (id_X \times q)$ be the rational map of $\overline{X} \times \tilde{H}_3$ to \overline{Y} .

Let H_4 be the subset of \tilde{H}_3 such that $h \in \tilde{H}_3$ belongs to H_4 if and

only if $\tilde{F}_h(\overline{X}_h) \subset D_Y$. It is easily seen that H_4 is a closed subset of \tilde{H}_3 . Let ω be an element of V_Y . If $h \notin H_4$, $\tilde{F}_h^*(\omega)$ is defined on \overline{X}_h and coincides with $i_h^*(\pi^{\otimes m}(\tilde{F}^*(\omega)))$ on a non-empty open subset of \overline{X}_h as in the proof of Lemma 5. $\tilde{F}_h^*(\omega)$ is not defined if $h \in H_4$. But we can prove that $i_h^*(\pi^{\otimes m}(\tilde{F}^*(\omega)))$ is defined and contained in V_X even if $h \in H_4$.

Lemma 7. $i_h^*(\pi^{\otimes m}(\tilde{F}^*(\omega))) \in V_X$.

Proof. By Lemma 1 and the definition of H_3 , $\tilde{F}^*(\omega)$ is a logarithmic m-ple n-form on $\overline{X} \times \tilde{H}_3$ along $D_X \times \tilde{H}_3 \cup p_2^{-1}(H_d)$. Hence $\pi^{\otimes m}(\tilde{F}^*(\omega))$ is a logarithmic form along $D_X \times \tilde{H}_3$, hence $i_h^*(\pi^{\otimes m}(\tilde{F}^*(\omega)))$ is a logarithmic form along D_X .

Thus we constructed a linear map $f_h: V_Y \to V_X$ for $h \in \tilde{H}_3$, hence a morphism $\varphi: \tilde{H}_3 \to H$ such that $\varphi(h) = f_h^{\vee}$. Since \tilde{H}_3 is complete and H is affine, Im (φ) is finite. If $h \notin H_4$, $\varphi(h)^{\vee}: V_Y \to V_X$ coinsides with $F_{q(h)}^*: V_Y \to V_X$. Therefore the image of the map ψ of H_3 to $H: h \mapsto F_h^*$ is finite. Now it follows that H_3 is finite, since ψ is injective as in Lemma 2, which proves that R is finite.

- § 3. The case $\dim(X) > \dim(Y)$. In this section we prove the theorem in the case $\dim(X) > \dim(Y)$. Assume that there exist infinite dominant strictly rational maps f_i $(i=1,2,\cdots)$ of X to Y. Then by [6] there exists a subvariety X_1 of X such that all f_i $(i=1,2,\cdots)$ are defined and distinct on X_1 , $f_{i|X_1}$ are dominant, and $\dim(X_1) = \dim(Y)$. This contradicts to the result of § 2.
- § 4. In analytic categories. Let X be a complex manifold such that there exists a compact complex space which contains X as its Zariski open subset. Then the logarithmic Kodaira dimension of X is defined as in the case of algebraic varieties. Then by the similar method as before we can prove the following:

Theorem. Let X be a complex manifold which X is a Zariski open subset of a Moishezon manifold \overline{X} and Y a complex manifold which Y is a Zariski open subset of a compact complex manifold \overline{Y} . Then if Y is of hyperbolic type, the set of dominant meromorphic maps of X to Y which are extended to meromorphic maps of \overline{X} to \overline{Y} is finite.

We need the assumption that \overline{X} is a Moishezon manifold for the existence of an analytic subspace of X such as X_1 in § 3.

A dominant holomorphic map of X to Y is extended to a meromorphic map of \overline{X} to \overline{Y} (cf. [8]). Hence the set of dominant holomorphic maps of X to Y is finite.

References

[1] Baily, W. L., Jr., and Borel, A.: Compactification of arithmetic quotients of bounded symmetric domains. Ann. of Math., 84, 442-528 (1966).

- [2] Deligne, P.: Theorie de Hodge. II. Publ. Math. IHES, 40, 5-58 (1973).
- [3] Iitaka, S.: On D-dimension of algebraic varieties. J. Math. Soc. Japan, 23, 356-373 (1971).
- [4] —: On logarithmic Kodaira dimension of algebraic varieties. Complex Analysis and Algebraic Geometry, Iwanami, Tokyo, 175–189 (1977).
- [5] Kobayashi, S.: Hyperbolic Manifolds and Holomorphic Mappings. Marsel Dekker, New York (1970).
- [6] Kobayashi, S., and Ochiai, T.: Meromorphic mappings onto complex spaces of general type. Invent. Math., 31, 7-16 (1975).
- [7] Matsumura, H.: Commutative Algebra. Benjamin, New York-Amsterdam (1970).
- [8] Sakai, F.: Kodaira dimensions of complements of divisors. Complex Analysis and Algebraic Geometry, Iwanami, Tokyo, 239-257 (1977).
- [9] Tsushima, R.: Hyperbolicity of quotients of bounded symmetric domains. Proc. Int. Symp. Algebraic Geometry, Kyoto, 1977, Kinokuniya, Tokyo, 687-691 (1978).
- [10] Ueno, K.: Classification theory of algebraic varieties and compact complex spaces. Lecture Notes in Math., vol. 439, Springer, Berlin-Heidelberg-New York (1975).