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1. Let H and V be a couple of real Hilbert spaces with VCHC V*
algebraically and topologically. The norm and inner product of H are
denoted by | |and (, ) respectively, and those of V are by || || and
((,)). Leta(u,v)be anot necessarily symmetric bilinear form defined
on V xV satisfying

la(u, )|=C||ull||v]], au, w) Za |ulf,
for some posgitive constants C and «. The associated linear operator
is denoted by L:
a(u, v)=Lu, v) u,veV.

Let ¢ be a properly convex lower semicontinuous convex function de-
fined on V. Then the operator A defined by

Au=Lu+dp(w) NH
is a maximal monotone mapping on H to 2Z. For u,c D(A)¥ and
feW-(0,T; H) let

w(t)=lim [] {1+%(A- f(%t))}uo

n—oo =1
be the solution of
du(t)/dt + Au(t) o f(t), w(0) =u,
in the sense of M. G. Crandall-A. Pazy [4]. For this solution the fol-
lowing theorem holds. A related result is Theorem 3.2 of F. J. Massey,

IIT1 [5], and in case L is symmetric also Corollary II. 2 of Chapter II
of H. Brezis [2].

Theorem 1. There exists a constant K such that
|tD*u(t)|§K(|u0~v| +f |f(s)|ds+t|A°v|>
0
13
+[ 1@+ 7@ s,
where v is an arbitrary element of D(A).
Outline of the proof. It suffices to prove the theorem in the case

min ¢=¢(0)=0. First assume u,e€ D(A) and fe W"¥0,T; H). For
e>0 let

$.(u) =in {~21; lu—v|F+4)}

be the Yosida approximation of ¢, and A, be the operator defined by
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Au=Lu+dp (w)NH.
Let u, be the solution of the approximate equation
du,(t)/dt +Au, ()= f(1), u,(0) =u,,

where u,,=(1+eA,)'u,. It is not difficult to show that w,.—u in
L*0,T; V). Hence it suffices to establish the corresponding estimate
for u, with constants independent of ¢, and we write « instead of u, to
simplify the notation. Noting that u(¢) is Lipschitz continuous in
[0, T] it is easy to show that « e L0, T;V), and consequently
w”’ e LX0,T; V*). After a routine calculation we obtain

Lt |2+j‘ (sLat/(s), sw/(s))ds
(1) 2 0

éﬂ s|uw(s)[* ds+ j: (sf'(8), su/(s))ds,

where we use the monotonicity of 34,. On the other hand noting

deé.(u(t))/dt =(0¢,(u(t)), w'(t))

one easily deduce
j: s|w(s)F ds+ j: (Lu(s), su'(8))ds + té.(u(t))
éﬁ (f(9), sw(s)ds+ I: ¢(u(s))ds.
Combining (1), (2) and the familiar inequality
L uctrr + [ @), wnds+ [ g s

(2)

< (jwl+ [ 17@)1ds)

and using Lemma A.5 of [1] we can establish the desired estimate.
The result in the general case is established by approximating «, and
f in the obvious manner.

2. Asanapplication we consider the following unilateral problem
ou/ot+ Lu=f, qu} in 9x[0, T1,
(ou/ot+ Lu— fHlu—¥)=0
—ou/on e plx,w) on I'X[0, T], u(x, 0)=uy(r) in 2,

where _[ is a linear elliptic operator of second order, and slightly im-
prove the estimate in the previous paper [6].

Let 2 be a not necessarily bounded domain in R¥ with smooth
boundary I'. Let

a(u, v):j ( i Oy ou__9v +i b, u v-l—cm))dx
2 \i,7=1 ox; 0x; i=1 0w,

be a bilinear form defined on H'(2) X H'(22). The coefficients a,;, b, are
bounded and continuous together with their first derivatives and c¢ is
bounded and measurable in £. The matrix {a;;(*)} is uniformly
positive definite and there exists a positive constant « such that c=«,
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c—ﬁ} ob;/0x; =a almost everywhere in 2. We denote by _L the dif-
=1

ferential operator associated with the bilinear form a(u, v):
Y 9 0 ul 0
L= _mZ=:1 o, (a”_aaZ)JriZﬂbi o, e

Let j(z,7) be a function defined on I' X (—oo, c0) such that for
each z e I' j(x, v) is a properly convex lower semicontinuous function
of r and j(x,r)=j(x,0)=0. We denote by p(xz, -)=0j(x, -) the sub-
differential of j(x,r) with respect to . As for the regularity with
respect to x we assume that for each fe(—oo, o) and 21>0
A+ 28, -))7'(t) is a measurable function of = (cf. B. D. Calvert-C. P.
Gupta [3]). Let +: LA(I")—[0, o] be the convex function defined by

)= {j i, u@)dl, i) e L)

co, otherwise.
Unless 7j(x, 7)=c0 as r#0 (namely the boundary condition is of

N
Dirichlet type), we assume that > b,v;,=0 on I" wherev=_, - - -, vy) is
i=1

the outer normal vector to 7.
By G(A) we denote the graph of the mapping A.
The operator L,: L?(2)—L?(2), 1=p<oco, is defined as follows:
(i) for p=2 f e Lu if u e H(Q), ¥(u|;)<oo

and

@, 0 — )+ (@) — () = j Sw—uds

for every v € H(2) such that ¥(@|,)<co;
(i) for p+#2, G(L,)=the closure of G(L,)N(L*(2)XL*(2)) in
Lr(Q)x LP(2).
In what follows we assume 1<p<2<p*=Np/(N—p). Let ¥ be
a function such that ¥ e Wx?(Q)NW'(2), LT L' (2) and ¥ /on
+p (x,¥)<0 on ', where
B (x, r)=min {z: z € f(x, )} if r» € D(A(, -)),
g (x,r)=o00 if re D(B(x,-)) and r=sup D(B(z, -)),
g (@, r)=—oc0 if re DB, ) and r=<inf DBz, -)).
We define the mapping M, by
DM )={ueL*(Q): u=¥ a.e. in 2},
Myu={geL’(2):9=<0 a.e., g(x)=0 if uw(@x)>¥ (@)},
and similarly M, with L'(2) in place of L?(2).
The operator 4,, 1 <q=<p*, is defined as follows:
(i) A,=L,+M,,
(ii) A1=L1+M1,
(i) for 1<q=p*, q+2, G(A4))=the closure of G(A,) N (L)
X LY8)) in LY(2) X LY92).
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Proposition. A, is m-accretive and
DA)={ueLi(Q):u=" a.e. in £}.
It is known that L,+ M, is not m-accretive in general under our
hypothesis.
Let L: H(2)—H'(2)* be the operator associated with the bilinear

form a(u, v) : a(u, v) =(Lu, v) for u, v € H'(2), and ¢ be the convex func-
tion on H'(2) defined by

¢(u)={jr i@, w@)dl, wz¥ ae., and j@l,)e L),

oo, otherwise.
The effective domain D(¢) of ¢ is not empty since it follows that
¥U* € D(¢) from the present hypothesis. Then it is not difficult to show
that A, coincides with the operator defined by
Au=(Lu+dg(w) N LA(Q).

Thus applying Theorem 1 and a comparison theorem we obtain

Theorem 2. Suppose that ¥<u,c LYQ) and fec W0, T ; LY(L)
NL (), 1=<q<2=<r. Then for the solution of

du(t)/dt + A u(t) o f(¢t), 0<t<T, u(0)=u,,

we have

ID*utt) ], S Col T |+ 0]+t [ 450 1)
7 ol 1)+ 827 [ 17 @), ds

w7 [ s @lds+ [ 1@, ds)

where v is an arbitrary element of D(A,), p=N@r"'—271/2, y=N(r"*
—q™M/2, 6=N@r—"'—p)/2 and | |, denotes the norm of L"(2).
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