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Department of Mathematics, Hiroshima University

(Communicated by K.6saku YOSIDA, M. ,l. A., Jan. 12, 1978)

1. Introduction. This paper is concerned with the asymptotic
behavior of solutions of differential equations of the form
(A) Lx(t) / f(t, x(g(t)))--O,
where the differential operator L is defined by

Lx(t) (p_(t)(p_(t)(... (p(t)x’(t))’...)’)’)’.
L may also be written in the orm L=L, where the operators L are
recursively defined by

Lx(t)=x’(t), Lx(t)--(p_(t)L_x(t))’, 2<_i<_n.

The conditions we always assume or p, g, f are as ollows
(a) Each p(t) is continuous and positive on [a, ) and

dt=c, l<i<n--1;_
p(t)

(b) g(t) is continuous on [a, c) and lira g(t)= c

(c) f(t, x) is continuous on [a, c)(--c,
or (t, x) e [a, c) (-- c, c), where o(t, r) is continuous on [a, c)

[0, c) and nondecreasing in r.
Equation (A) is called superlinear or sublinear according to whether

o(t, r)/r is nondecreasing or nonincreasing in r or r> 0.

A unction x(t)defined on some half-axis [T, c) is said to be a
solution of (A) if Lx(t), Lx(t), ..., Lx(t) exist and are continuous on
(T, c), where TT is such that g(t)T or t> T, and if x(t) satisfies
(A) on (T, c). Hereafter our attention will be restricted to solutions
of (A) which are nontrivial on any infinite subintervals of [T, c).
Such a solution is said to be oscillatory if it has arbitrarily large zeros
otherwise the solution is said to be nonoscillatory.

The asymptotic properties o second order unctional differential
equations with a general deviating argument have recently been studied
by Kitamura and Kusano [2]. The object of this paper is to extend
the theory developed in [2] to higher-order equations o the orm (A).
Of particular interest is an analysis of the effect that g(t) can have on
the growth or decay o solutions of equation (A) which is either super-
linear or sublinear. The results are stated without proofs; an exposi-
tion in ull detail will appear elsewhere.
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2. Possible behavior ot all solutions. We use the ollowing
notation throughout the paper"

,(t, s) 1 (0

_
i_n-- 1),

P(t)=o,(t, a), Q(t)=[,_(a, t)[ (0in-1),

{ P,_(t)Q,_(t)}P,(t) B,(t) =max 1, (1in-- 1),A,(t)=
P,_(t)

g*(t)=mx {g(t), t}, g.(t) =rain {g(t), t},
h*(t)= sup g*(s), h.(t)=inf g.(s).

ast t

The basic result of this paper is the following theorem which
describes the possible behavior o all solutions of (A).

Theorem 1. Suppose that either (A) is superlinear and

( 1 ) A,(g*(t)) Bdt)Q,(t)(t, cPdg(t)))dt
A,(g(t))

for all c>O and i with lin-1, or (A) is sublinear and

for all c> 0 and i with 1 NiNn- 1.
If x(t) is a solution of (A), then one of the following cases holds"

(I) limsup [x(t)=;- P_(t)
( II ) There exist an integer k, 0 kn-1, and a nonzero number

c, such that

lira x(t) c

(III) lira x(t)=0.

In the proof of this theorem the following lemma is crucial.
Lemma 1. Let 1 k n-- 1 and suppose that

A,(g*(t)) B(t)Q,(t)(t, P(g(t)))dt <
A(g(t))

if (A) is superlinear and that

A(g*(t))B(t)Q(t)(t, P_x(g(t)))dt

if (A) is sublinear.
If x(t) is a solution of (A) such that x(t)=o(P(t)) as to, then

x(t)=O(P_(t)) as t.
We say that condition (G*) [resp. (G.)] is satisfied if there is a

sequence {t}:= such that to as, nd h*(t)=t [resp. h.(t)=t]
for ,= 1, 2, ..
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These additional conditions on g(t) are used to exclude Case (I) or
(III) from the possibilities listed in Theorem 1.

Lemma 2. Suppose tha$ (A) is superlinear and (G.) is satisfied.
If

Qo(t)o(t, )dt<
then every solution x($) of (A) satisfies lim sup

Lemma 3. Suppose tha$ (A) is sublinear and (G*) is satisfied. If
w(t, P_(g(t)))d$<

then every solution x(t) of (A) satisfies x(t)=O(P_(t)) as.
3. Behavior of nonoscillatory solutions. A fundamental set of

solutions of the equation Lx(t) =0 is given by (P(t)" 0 kn-- 1}. It
is not difficult to find a sufficient condition for (A) to have solutions
which are asymptotic to a P(t) as t.

Theorem 2. Le 0 k n-- 1 and suppose hat

Then (A) has solutions x(t), y(t) such that

lira x(t_ c lira y(t) c
P(t) 2’ t P(t) 2

This theorem extends a recent result due to Granata [1]. The
proof is standard; we transform (A) into the integral equation

u(t) aPe(t) +u(),
where a c/2 or c/2, and

u(t)=ITo,_(t,s)f(s,u(g(s)))ds if k=0,

: ,(s,) (s) o:
’-(s’ s)f(s, u(g(s)))ds

if lkn-1,
T being sufficiently large, and then solve it with the help of the
Schauder-Tychonoff fixed point theorem.

Suppose that (A) is either superlinear or sublinear. Then the
hypotheses of Theorem 1 guarantee that (3) holds for all c 0 and each
k, 0kn--1. It follows therefore that under the hypotheses of
Theorem 1 equation (A) actually possesses nonoscillatory solutions
which are asymptotic to P(t) as for every k, 0 n-- 1. Sup-
pose moreover that xf(t, x) is of constant sign. In this case, if x(t) is
a nonoscillatory solution of (A), then each of Lx(), L2x(), ..., L_($)
is eventually of constant sign. By analyzing this situation carefully
and using condition (G*) or (G.) if necessary, we can show that in
certain cases all nonoscillatory solutions of (A) are subject to Case (II)
of Theorem 1, that is, they behave like the solutions of Lx(t)=O.
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Theorem 3. Let n be even and xf(t,x)>=O on [a, oo)(-oz, c).
Suppose that the hypotheses of Theorem 1 are satisfied.

Then, any nonoscillatory solution of (A) behaves as in Case (II) of
Theorem 1.

Theorem 4. Let n be odd. Suppose that
(i) (A) is superlinear, xf(t, x) >= 0 on [a, c) (-- c, oo), (G.) is

satisfied and (1) holds for all cO and every i, 1 <_i<_n--1, or
(ii) (A) is sublinear, xf(t,x)_<O on [a, c)(--c, oo), (G*) is

satisfied and (2) holds for all c0 and every i, 1 <_i<_n--1.
Then, any nonoscillatory solution of (A) behaves as in Case (II) of

Theorem 1.
4. Behavior of oscillatory solutions. The asymptotic behavior

of oscillatory solutions of (A) is described in the ollowing theorem.
Theorem 5. (i) Assume that (A) is superlinear and (G.) is

satisfied. If (1) holds for all cO and every i, 1 <_i<_n-1, then every
oscillatory solution x(t) of (A) has the property

lim sup
,_oo P_(t)

(ii) Assume hat (A) is sublinear and (G*) is satisfied. If (2) holds

for all cO and every i, 1 <=i<_n-1, then every oscillatory solution of
(A) has the property

lim x(t)=0.

As a consequence o Theorem 5 we have the following nonoscilla-
tion result or almost linear equations of the form (A).

Theorem 6. Suppose that
if(t, x)J<=q(t) ix] for (t, x)

where q(t) is continuous and positive on [a, oo). Suppose in addition
that both (G*) and (G.) are satisfied. If

A,(g*(t))B,(t)P_l(g(t))Q,(t)q(t)dt< c for 1 <= i <_n-- 1,

then all solutions of (A) are nonoscillatory.
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