No. 10]

Proc. Japan Acad., 100, Ser. A (2024) 57

How often can two independent elephant random walks on Z meet?
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Abstract:

We show that two independent elephant random walks on the integer lattice

Z meet each other finitely often or infinitely often depends on whether the memory parameter
p is strictly larger than 3/4 or not. Asymptotic results for the distance between them are also

obtained.
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Over 100
years have passed since the term “random walk” ap-
peared in the letter of Pearson [9]. It is arguably the
simplest stochastic process. Pdlya [10, 11] started
the study of random walk on the d-dimensional lat-
tice: A wandering point (or a random walker) moves
uniformly at random between the nearest-neighbour
sites on the integer lattice Z? with each step being
taken independent of past steps. As is explained in
Pélya [12], his main motivation was to understand
whether the probability that two independent ran-
dom walkers eventually meet each other is one or not.
Problems on random walkers with memory, namely
their future evolution depend on the entire history
of the process, appeared more recently in connec-
tion with several applications. Such examples in-
clude self-avoiding random walks, reinforced random
walks, and elephant random walks. See Hughes [6],
Révész [14], Laulin [8], and the references therein.

1. Introduction and results.

A similar problem described in the previous
paragraph arises also for two independent random
walkers with memory. In this note we give an answer
for the elephant random walk, introduced by Schiitz
and Trimper [15]. The first step X; of the walker
is +1 with probability s, and —1 with probability
1 —s. For each n = 1,2,---, let U, be uniformly
distributed on {1,--- ,n}, and
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with probability p,

—_ XUn

X,y =40
e with probability 1 — p,

where {U,, : n =1,2,---} is an independent family
of random variables. The sequence {X;} generates a
one-dimensional random walk {S,} by

So:=0, and SH:ZXZ- forn=1,2,---.

i=1

In the case p = 1/2, {S,} is essentially the usual
symmetric random walk. For p > 1/2 [resp. p <
1/2] the walker prefers to do the same as [resp. the
opposite of] the previous decision.

Schiitz and Trimper [15] show that there are two
distinct (diffusive/super-diffusive) regimes about the
asymptotic behavior of the mean square displace-
ment. After their study, several limit theorems de-
scribing the influence of the memory parameter p
have been studied by many authors [1-5, 7, 13]:

(a) When 0 < p < 3/4 the elephant random walk is
diffusive, and the fluctuation is Gaussian:

Snd
—_— =

1
\/ﬁ N<073——4p) as n — OQ.

where % denotes the convergence in distribution,
and N(u,0?) is the normal distribution with mean
i and variance o2,
(b) When p = 3/4 the walk is marginally superdif-
fusive and
S’I’L
Vnlogn

(c) If 3/4 < p < 1 then there exists a random vari-
able L with a continuous distribution depending on
both p and s such that

gN(O,l) as n — oo.
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n .
(x) ——— — L as. andin L? as n — oo.
n2p—1

Although L is non-Gaussian, the fluctuation from
the “random drift” Ln?’~! due to the strong mem-
ory effect is still Gaussian:

S,, — Ln?P~1 1
\/%LgN(O74p_3> as n — Q.

Our main result is the following

Theorem 1.1. If0 < p < 3/4 then two inde-
pendent elephant random walks with the same mem-
ory parameter p meet each other infinitely often with
probability one. On the other hand, if 3/4 < p < 1
then they meet each other only finitely often with
probability one.

This theorem shows that two elephant random
walks cannot meet infinitely often if the memory ef-
fect is too strong.

Theorem 1.1 follows from

Theorem 1.2. Let {S,} and {S}} be two in-
dependent elephant random walks with the same
memory parameter p.

(i) If 0 < p < 3/4 then

/
n — 2
limsup + Sn = S = a.s.
n—oo /nloglogn /3 —4p
(ii) Ifp=3/4 then
Sp — S
lim sup + n = a.s
n—oo  v/nlognlogloglogn
(iii) If3/4 <p <1 then
_ !
lim M =M a.s.,

n—oo n2p—1

where M is a random variable with
P(M #0)=1.

2. Proof of Theorem 1.2. We use the fol-
lowing strong approximation result.
Lemma 2.1 (Coletti, Gava and Schiitz [4]).
Let {S,} be the elephant random walk with the mem-
ory parameter p, and {B(t)} be the standard Brow-
nian motion.
(i) If0 <p < 3/4 then

n2p71

V3=dp
= o(y/nloglogn) a.s.
(ii) If p=3/4 then
Sn —+/n - B(logn)

S, — - B(n®~4r)
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= o(y/nlognlogloglogn) a.s.

Let {B(t)} and {B’(t)} be two independent
standard Brownian motions. It is straightforward to
see that {B(t)— B'(t)} and {v/2B(t)} have the same
distribution. By the law of the iterated logarithm for
the standard Brownian motion,

B(t) - B'(t)

limsup ——————— =2

t—00 tloglogt

with probability one. Thus we have
n2p71{B(n374p) _ B/(n374p)}

li =2
17r1n_)sotip vnloglogn
and
!
oy VB og 1) = B(logn)} _
n—00 v/nlognlogloglogn

with probability one. Now Theorem 1.2 (i) [resp.
(ii)] follows from Lemma 2.1 (i) [resp. (ii)].

Now we turn to the case 3/4 < p < 1. By (%),

/

lim —>— =L and lim =L as.

n—o0 7’L2p71 n— oo ’rLQP*I
Noting that L and L’ are independent, and both
of them have continuous distributions, we have that
P(L = L") = 0. Putting M := L — L/, we obtain
Theorem 1.2 (iii). L]
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