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Legendre magnetic flows for geodesic spheres in a complex projective space

By Qingsong SHI*) and Toshiaki ADACHI™

(Communicated by Kenji FUKAYA, M.J.A., Dec. 12, 2023)

Abstract:

On a geodesic sphere in a complex projective space, we have Sasakian magnetic

fields induced by the almost contact metric structure. In this paper, we investigate their magnetic
flows on the unit sphere subbundle of the bundle of the contact distribution over this geodesic
sphere, and show that they are smoothly conjugate to each other.
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1. Introduction. On each geodesic sphere
in a complex projective space, we have an almost
contact metric structure induced by complex struc-
ture on the ambient space. By use of the canonical
closed 2-form induced by this structure, we can
define magnetic fields on this geodesic sphere, which
are called Sasakian magnetic fields or contact
magnetic fields (cf. [3,6,7]). Just like geodesics give
the geodesic flow, we obtain magnetic flows on the
unit tangent bundle from trajectories of charged
particles under the influence of magnetic fields. In
this paper, we investigate the relationship between
two magnetic flows for a given geodesic sphere in a
complex projective space.

In his papers [1,2], the second author studied
trajectories for Kéahler magnetic fields which are
induced by complex structure on a complex projec-
tive space CP" and on a complex hyperbolic space
CH". He showed that magnetic flows on the unit
tangent bundle of CP" are smoothly conjugate to
each other, and that those on the unit tangent
bundle of CH" are classified into three conjugate
classes. Since some geodesic spheres in CP" are
manifolds which are so called Sasakian space forms,
manifolds having constant ¢-sectional curvatures,
it is natural to consider that we can find a
corresponding property on magnetic flows for these
manifolds.

Being different from trajectories for Kaihler
magnetic fields, strengths acting on trajectories for
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Sasakian magnetic fields depend on trajectories.
This makes our treatment of these trajectories a bit
complicated. Though Maeda and the second author
studied all geodesics on Sasakian space forms in [4],
the authors restricted themselves to trajectories
which are orthogonal to characteristic vector fields
and investigate their length spectrum in [10]. In this
paper, following this line, we investigate restricted
magnetic flows obtained by trajectories orthogonal
to characteristic vector fields. We take horizontal
lifts of these trajectories through a Hopf fibration.
Considering the expression of the horizontal lift of
the contact distribution, we describe the flow on
a subbundle of the tangent bundle of complex
Euclidean space. We then show that restricted
magnetic flows associated with Sasakian magnetic
fields on each geodesic sphere in CP" are conjugate
to each other.

2. Trajectories for Sasakian magnetic
fields. A real hypersurface M in a Kéahler mani-
fold M with complex structure J admits an almost
contact metric structure (&, ¢,n, (,)) (c.f. [5]). With
a unit normal (local) vector field A" of M in M, the
characteristic vector field £ is defined by £ = —JN/,
the 1-form 7 is given by n(v) = (v,£), the structure
tensor field ¢ is defined by ¢(v) = Jv — n(v)N, and
(,) is the metric induced from the one on M. On
this real hypersurface M, we have a natural closed
2-form F,; defined by Fy(u,v) = (u,¢v) for u,v €
T,M at an arbitrary point p € M. Its constant
multiple F,, = kF,, (k € R) is said to be a Sasakian
magnetic field or contact magnetic field (for mag-
netic fields, see [11]). A smooth curve ~ parame-
terized by its arc-length is said to be a trajectory for
F, if it satisfies the differential equation Vsy =
k¢ry. Clearly, when x = 0, it is a geodesic. For this
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trajectory -y, we set p,(t) =n(§(t)) and call this
function its structure torsion. Since we have
V53l = |kly/1 = p2, it measures the influence of
the magnetic field. In order to calculate the differ-
ential of the structure torsion, we denote by V and
V the covariant differentiations on M and M,
respectively. We have the Gauss and Weingarten
formulas

VxY = ViV + (AX,Y)N, VN =—AN

for vector fields X, Y tangent to M with the shape
operator A with respect to N. These lead us to
Vx€& = pAX. We therefore find that

=7(1,8) = (£¢7, &) + (1, pA7)
= (1, ¢A47) = —(4¢7,7),

%Pv

hence have

d 1

=5 (1, (0A = Ad)7).

2.1 — Pr

Thus, the structure torsion for a trajectory < is not
constant along v, in general.

In this paper we study magnetic flows for
geodesic spheres in a complex projective space. Just
like geodesics induce the geodesic flow, trajectories
for F,, induce magnetic flow F,p,: UM — UM on
the unit tangent bundle UM of M. That is, for v €
UM we denote by =, the trajectory of initial vector
v, and set Fop(v) =4,(t). Let G(r) denote a
geodesic sphere of radius r in a complex projective
space CP"(c) of constant holomorphic sectional
curvature c¢. It has two principal curvatures.
Denoting its shape operator with respect to the
inner unit normal N by A, we have

A& = Jecot eré,
NG

Av = —cot ﬁ TV
2 2
In particular, its shape operator A and its structure
tensor field ¢ are simultaneously diagonalizable, i.e.
A¢p = ¢A. Therefore, we find by (2.1) that the
structure torsion of each trajectory for a Sasakian
magnetic field on G(r) is constant along the
trajectory. When a trajectory has null structure
torsion p, = 0, which is the case that the velocity
vector 7 is orthogonal to &, it is called a Legendre
trajectory. We take the bundle T°G(r) = {v e
TG(r)|v L&} of the contact distribution, and
consider its sphere subbundle U’G(r) = {v¢€

(v Lg).
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T°G(r) | ||v|| = 1}. Then, Legendre trajectories on
G(r) induce a flow F.¢! : U'G(r) — U°G(r), which
is the restriction of F,¢; onto U’G(r). We shall call
this the Legendre magnetic flow for a Sasakian
magnetic field F,.

We say two smooth flows ¢, 9 on a differ-
entiable manifold X are (smoothly) conjugate with
each other if there exist a diffeomorphism f: X —
X and a constant « satidfying 1; = f~ o @u o f for
all t. Our main result is the following

Theorem. Let G(r) be a geodesic sphere of
radius v in a complex projective space CP"(c). The
Legendre magnetic flow F.? for an arbitrary
Sasakian magnetic field F, is smoothly conjugate
to the Legendre geodesic flow ). More precisely,
there is a diffeomorphism f, on U'G(r) satisfying

0_ p~1.,,.0
Fﬁ’wt o f“ °¥ k2sin®(y/er/2)+ct/\/c © f-
Moreover, our result shows the following
Corollary. Let G(r) be a geodesic sphere of
radius r in a complex projective space CP"(c). Then
arbitrary Legendre magnetic flows for Sasakian
magnetic fields on G(r) are conjugate to each other.
3. Tangent bundles of geodesic spheres.
In order to study Legendre trajectories on geodesic
spheres in a complex projective space, we here recall
the expression of the tangent bundle of a geodesic
sphere through a Hopf fibration (cf. [9]). It is
enough to study the case ¢ =4. Let w: S —
CP"(4) denote a Hopf fibration of a unit sphere.
The tangent space at z= (z0,...,2,) € S*" C
C""! which is given as
1.8 = {(z,v) € {z} x C"*
| Re(2000 + -+ + 2,0,) = 0},
is decomposed into horizontal and vertical spaces
H., V. given by
H, = {(2,v) € {2} x C"*" | 209 + - - - + 2,7, = 0},
V. ={(z,V—1az) € {z} x C"™ | a € R}.
We take a geodesic sphere M = G(r) in CP"(4)
whose inverse image M = @ !(G(r)) is given by
M={z=(z,...,z)€C""
20| = cosr, [a1f* + -+ + [zaf* = sin?r}.
We hence have
T.M = {(z,v) € {z} x C"*!
| Re(z09) = 0, Re(z101 + -+ + 2,0,) = 0}.

For the sake of simplicity, we express a point z € M
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as z = (29, 2«) € C x C". Considering signatures of
principal curvatures of M, we see that the horizon-
tal lift A, € (TZJ\ZI')l N H. of the unit normal NV,
at z is given as N, = (z (tanrzy, —cotrz,)) €
{z} x C™,

We now give an expression of the horizontal lift
of the bundle T°M = {u € TM | u L £}. We denote
by fz S TZ]\Afﬂ H. the horizontal lift of the charac-
teristic vector &, at 2. It is given by —JAN . with
the complex structure J on C"™. If (2, (v, v.)) €
TZ]\Z N H. is orthogonal to éz, as it is also orthogonal
to N, we have

tanrzoty — cot (2101 4+« - + 2,0,) = 0,
20U + - + 2,0, = 0,

hence have
(3.1)
(3.2) 2101 + -+ 2,0, = 0.
Since |zp| = cosr (#0), we find vy =0. Thus, by
puting T°M = {u € TM | u L £} we have

TOM N H. = {(z(0,v.)) € {z} x C"*

| 2101 + -+ + 2,0, = 0}.

2009 = 0,

4. Legendre trajectories on geodesic
spheres. In [3], we gave explicit expressions of
horizontal lifts of trajectories through a Hopf
fibration. We quickly recall the expression for
Legendre trajectories. Let v be a trajectory for F,
on a geodesic sphere G(r) in a complex projective
space CP"(4). Through an isometric embedding
t:G(r) — CP"(4), we identify this curve with
the curve ¢ o~ and regard it as a curve in CP"(4).
We take its horizontal lift 4 through a Hopf
fibration w : $?"*!1 — CP"(4) of a unit sphere, and
regard it as a curve in C"*!. In order to study =, we
are enough to investigate 7.

We denote by X/ a unit normal of M =
@ Y(G(r)) in S+ which is the horizontal lift of
N, and denote by N the outward unit normal of
S2n+1in C"*1. Let V be the Riemannian connection
on C"™. For arbitrary vector fields X,Y tangent to
M = G(r), denoting their horizontal lifts by X,
we have

—

VoY = VY + (X, JY)IN = (X,Y)N
= VaY + (AX, V)N
+ (X, JY)IN — (X, V)N
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By using this relationship, we obtain
Vi = k(J3 = pN) + (A3, )N = N.

Since we have (A%,) = A(1— p?/) + 6p?/ with A =
cotr and 6 = 2 cot 2r, which is constant along v, and
have

VN = —45 = =3 + p, JN) + 6p, TN,
we find
ViV = kIV:Y — ((A%,9) — kpy) AY — 4.
Thus, when p, =0, the differential equation turns
to
= = 4 = 4 1 .
ViViy =KkJVy — ——7.

sin“ r

Solving this differential equation, we have
1
At) = e\/__l’“/?{Acos§ \/ K2+ (4/sin®r)t
1 . 9
+ Bsm§ K2+ (4/sin°r)ty +C

with A, B,C' € C"*!. Considering initial condition
5(0)=ze M c C™,

0) = (z0), N.=(zw) € {2} x C"*,
we find
A =sin’rz—sinrcosrw,
B = il (—v—lnsin%ﬂz

kZsin? 7 + 4
+V—1I€SinTCOST‘w+2’l}),
C = cos’rz+sinrcosrw.

We now study Legendre magnetic flows on
UG(r). We express the horizontal lift 4 of a
trajectory v on G(r) in CP"(4) as A(t) =
(Zy(t), Z.(t)) € C x C" by regarding 4 as a curve
in C"*'. We put 4/(t) = (Vo(t),Vi(t)) € C x C".
Similarly, we set z = (29, 2+), v = (vo,v,). We then
have w = (tanr zp, —cot r z,). By setting two func-
tions ¢, s, by

4
¢x(t) = cos - [ K2 + ——1,
sin®r
4
5.(t) = sin - 4/ K% + ——5—1,
sin”r

we have
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Z()(t) = 2y, ](t =0

Vo
Z.(t) \/—Kt/Q{ _ V—lasinr lksinr

VK2sin?r +4

— 5, (t)) Zs

S5 (t) 24

2sinr
—— 5,.(t)v. ¢,
VK2sin?r +4
‘/;(t) _ emmt/z _ 2
sinrv/k2sin’r + 4
vV —1ksinr
———————5.(t) s g
VKZsin?r 4+ 4

Here, we note that ||Zy(t)|| = cosr, ||Z.(t)|| = sinr
and ||[V.(¢)|| = 1 by (3.2). Thus we can express Z,(t)
and Vi (t) as

an () =)

with a matrix

+

+ (cﬁ(t) +

<a§§" ()L, aly m)
ag) ()1, aly) (t)I,
5. (t) } ,

vV—1ksinr

(K)
a9 (t) = { eult) - LT
" { VK2sin?r +4

2
(K)
ayy (t) = ———= s,(1),
2 VKZsin?r +4
o 2
af (1) = - si(t),

VK2sin?r +4

agy (t) = {cm + \/%5(7&)}

Here ‘w denotes the transposed vector of w € C"
and I, denotes the n x n identity matrix. If we set a

unitary matrix P, as
ﬂﬁz%%>

a@(
P P,

with
W) V=1V mQSin2r+4—msinT)l/2
P = :
H V2(k2sin® r + 4)1
W V=1 K2sinr + 4 + ksinr)'/?
P1o = s

V2(k2sin® r + 4)Y*
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w k2sin?r + 4 + ksinr)/?
p =

2 \/5(/'%2 sin®r + 4)1/4

w  (VKZsin®r 44— ksinr)/?

p =
- V2(K2sin? r 4 4)/1

3

)

we obtain

tZ.(t)/sinr
V.(t)

_ e\/—_lfi?t/Q

d" (¢t I, 0, tz./sinr
On &3O,

where P denotes the adjoint matrix of P, and
dy (1) = {en(t) + V=T (1)},
iy (1) = {en(t) = V=Ts.(1)}.

By identifying TC"™! to C"™ x C"™ =

(4.2)

C x

C"x CxC", we define a diffeomorphism fo:
TC"™ — TC"™ by QPyP*Q~", where
1 0 0 0
= o ¥, 0 I,
PK, = )
0 0 1 0
0PI 0 P
1 0 0 0
B 0 1/v/-2I, 0 /-1/21I,
““lo 0 1 0 ’
0 1/v2I1, 0 1/v2I,
1 0 0 0
~ 0 sinrl, 0 O,
Q =
0 0 1 0
0 On 0 I’n
This dlﬁeomorphism preserves the bundle

U EM(UOMﬂ'H ) over M = (G(r)) by regard-
ing it as a subbundle of M x C"*!' (c TC"). Here,
UOM denotes the set of all unit ‘tangent vectors of M
at z which are orthogonal to fz Clearly it satisfies
F(vV/=1n) = V1f.(n) for every neTC™'. We
therefore obtain a diffeomorphism f, : U'G(r) —
U'G(r) satisfying dw o f. = f. o dw. Since we have
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by (4.1) with the matrix

1 0 0 0
~ 0 oYL, 0 a3,
A= 0 1 0 ’
0 M, 0 B
21 n 292 n

we find that the expression (4.2) shows

mengglo@(i/mtﬂofn-

In order to study Legendre magnetic flows for
G(r) in CP"(c), we change the metric homotheti-
cally. By using the Riemannian metric (,) on
CP"(c) we define a new metric (,) by (,) =
(v/¢/2)(,). With respect to this mew metric, the
geodesic sphere G(r) can be seen as a geodesic
sphere G(r’) of radius v/ = y/cr/2 in CP"(4). When
v is a trajectory for F, on G(r), then the curve
o(s) =v(2s/+/c) is a trajectory for F, with ' =
2k/y/c on G(r'). We denote by (F’¢;)" and (¢))
the Legendre magnetic flow for F,, and the
Legendre geodesic flow for G(r'), respectively. By
using a diffeomorphism f/, of UG(7'), we define a
diffeomorphism  f., of U'G(r) by f.(v)=
(v¢/2) fv((2/+/¢)v). We then have

pto - Y et (20

[

(7)o " Vo si( )
W V(&) sin? /44 /2t /4 ~\ e
- fh to QOU K2sin?(yer/2)+et/ /e ° fﬁ(v).

This shows our theorem.

At last, we compare our result to that on
Kéhler magnetic flows on a complex projective
space. A constant multiple B, = kB of the Kéhler
form B; on a Ké&hler manifold M is said to be a
Kahler magnetic field. Hence its trajectory = is
a smooth curve parameterized by its arclength
satisfying the differential equation Vyy = kJ7.
Trajectories for B, induce a Kéhler magnetic flow

Legendre magnetic flows for geodesic spheres in a complex projective space
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B¢ on the unit tangent bundle UM of M. In [1], it
was shown that every Kéahler magnetic flow By,
on a complex projective space is smoothly conjugate
to the geodesic flow ;. That is, there is a diffeo-
morphism g, : UCP"(¢c) — UCP"(c) satistying
B.pi=g.lo Pt/ ye © 9s- We should note that
a geodesic sphere G(r) in CP"(c) has constant ¢-
sectional curvature c(4 + cot?(y/cr/2))/4 (see [8]).
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