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1. Limit distribution of composed population.

In a population, the distribution of an inherited character will
arrive at an equilibrium state soon in the next generation, if
matings take place at random with respect to the character, even
when the distribution in initial generation is not in an equilibrium
state. This is a fact that we have already noticed at the end of
the previous paper). In practice, however, particularly in such a
ease where the population cover a very wide range, it will not be
expected that such random matings take place for once only. We
should rather expect that this buffer effect grows gradually through
many generations. Although we shall postpone the detailed dis-
cussion of this problem still later, we notice here a remarkable
fact in a cross-breeding process.

As in the las section of I, we consider g races X() each of
which possesses an equilibrium distribution. Denoting by

(1.1) p (i 1, ..., m)
the frequencies of genes A in the race X(), then the frequencies
of genotypes are given by

(1.2) ) p$), ..,]) 2p)p}) (i j).

These quantities satisfy of course the fundamental relations

() ]() 1 ( 1, g)p 1,

and moreover, as shown in (2.9) of I, we have

(1.3) p) :)+) (i=l m’=l g)

Suppose now, as in 4 of I, that these races X() ( 1,..., g)
are mixed at the rate ()( 0) with

g

(I.4) () 1

the distribution of resulting population X will then given by

=I 1

1) Y. Komatu, Probability-theoretic investigations on inheritance. I. Distribu-
tion of genes. Proc. Jap. Acad., 27 (1951), 371-377. This will be referred to as I.
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Now, as already shown at the beginning of 4 of I, the distribution
of this composed race canaot be in equilibrium state provided that
all the component races have not an identical distribution. Under
these circumstances we take as frequency p of each gene A in
the race X, the frequency of A which will appear in its limit
distribution, that is, an equilibrium distribution arrived at ultimately
after buffer effect. In view of the result in 4 of I we have

(1.6) p A,+-Av (i 1, ..., m).

Substituting the values (1.5) in the right-hand side of (1.3), we get

p
=
()A), + ’ .

which may, ia view of (1.3), be also written as

(1.7) p c);) (i I m)

The are edent relations which may also be previously expected.
Ia order to distinguish the frequency of genotypes Av(i j)

in the limit distribution from that in the original one, we denote
the former by -*A, while the latter is denoted by v. Because of
(1.7) we obtain

On the other hand, in view of (1.2) aad (1.5), the original distri-
bution is given by

g

We now compare te original dstruton of the race X with
its limit distribution. Remembering the identical relation (1.4),
we have, from (1.8) and (1.9), for difference between frequencies
of homozygote A"

and for differenee between frequeneies of heterozygote Av"
g g g g

(1.11)

The relations (1.10) concerning homozygotes contain a very
striking conteat. In fact, we can immediately deduce

(i ..., m),
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which are really based on the well-known Cauchy’s inequality.
Moreover, it is evident that the equality sign in (1.12) can appear
if and only if p)(, 1,..., g) are all identical.

We thus have obtained the ollowing result:
In any population composed of some races in a mosaic manner

each of which possesses an equilibrium distribution, any homozygote
will have a frequency in the initial distribution not less than that in
the limit equilibrium distribution. Moreover, the tbrmer is actually
greater than the latter, unless al the component-races possess an
identical distribution.

With regard to heterozygotes, since the right-hand members
of the relations (1.11) do not possess a definite sign, an analogous
result does not hold.

As an illustrative example we consider ABO human blood type.
In this case, the frequency of each homozygote 00, AA, BB will
diminish, compared with that in the initial distribution, when the
equilibrium state will be reached. In particular, homozygote O0
being composed of recessive genes and hence its frequency re-
presenting exactly that of phenotype O, the same is also valid or
the latter. The analogous result applies also to the phenotypes M
and N in MN blood type and the phenotype q in Q blood type.

2. Anthropological applications.

The relations (1.7), combined with (1.4), further implies
g

(2.1) ()(p()--p.) 0 (i--- 1,..., m).

These relations being homogeneous in (), only their ratios
are essential, namely, the accessory condition (1.4) may now be
removed. These m relations may be regarded as a system of linear
equations to determine /he ratios between ()(r 1,..., g). T
state more precisely, m relations (2.1) can be considered as
simultaneous equations to determine the rate ()(r-- 1, g) of
each sub-race X() possessing the distribution {p)} when the dis-
tribution {p} of the composed population X is also known.

As these equations are all homogeneous in (), there exist
essentially g-1 unknown quantities expressed as the ratios between
them. On %he other-hand, because of the fundamental relations

(2.2) "<"z. P) P 1 (r, 1, g),

he sum of all he lef-had sides of hese m equations vanishes
idenieally, and heee he system (2.1) consists of a mos m--1
indeperclen equations.

We firs consider he ease m > . A system of ml equations
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in g--1 unknown quantities has then in general no solution. In
order that the system is solvable, it is necessary and sufficient that
the rank p, say, of (m, g) matrix

(23) (P)--P P’)--P’ t
does not exceed g-1. But, in such a case, as we are now
considering, where the relations in question hold without any
contradiction, this condition must also be supposed valid. Frther-
more, we shall have ordinarily --g--1 and hence the ratios
between ( will be uniquely determined by the equations (2.1).
Suppose, then, that for instance the first g-1 columns are inde-
pendent, the required ratios are givea by

,(’) :-.." ,() :-.-" (q)=--H(’) :..." (--1)H() ..." (--1)-qH’),

where, the (g--l, g) sub-matrix composed of the first g--1 rows of
(2.3) being denoted by

’PI)-- Pl PI)--P

//() expresses the determinant of the matrix obtained from this
sub-matrix by deleting the ,th column, i.e.

(2.5) II()

p_p_ ,(-)

(, 1,..., g).
The result remains valid also in case m--g.

We next consider the contary case p c. g--1. The system (2.1)
is then always solvable, but the solution is not determined uniquely.
For instance, always so it is in case m<g. Such circumstances
are evidently owing to the fact that the number of component-races
exceeds that of genes and hence the rates of mixture giving the
same distribution as in the composed population are possible in
infinitely many manners. Even though m---g, we have still \ g--l,
provided p!) p)(i 1,..., m) for some pair of ., ,. This is the
case where the both races X() and X() possess an identical distribu-
tion, and hence any change in rate of mixture between them alone
has no effect upon he total distribution;the indefiniteness of the
rate of mixture is thus a quite evident consequence in this case.

The above stated result will now be concretely illustrated by
ABO blood type. In this case, we have m 3. If there exist
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more than three sub-races, the rates of mixture are determined
not uniquely and hence the case gm may be se aside as an
uninteresting one.

We first consider the case g =3, i.e. the case where three
sub-races ’), X() and X(’) are existent. Denoting by p, q, r, as
usual, the frequencies of genes A, B, 0 respectively, and making
use of analogous suffix-notations as in general consideration, the
system of equations in question become

()(p()--p) + a(:)(p() p) + a()(p()--p) O,
(2.6) ()(q()--q) + ()(q()--q) + (’)(q(’) --q) 0,

(’)(’r()--r) + ()(r()--r) + (:)(r(:) --r) 0.
Among these relations the last is not independent of the first two,
from which we obtain

(2.7)
p(:)_ p p(’) p

q(:--q q(.)--q q(,)--q q()q

If in particular all terms in the right-hand side ’of (2.7)vanish
simultaneously, the ratios connot be determined uniquely. This is
a special case, in which the relations

(p()--p)/(q()_q) (p()--p)/(q().--q) (p(:)--p)/(q()--q)

hold good and hence the rank of the coefficient-matrix in original equa-
tions is less than g--1 2. Except this special case only, the ratios
(’): (): (’) are uniquely determined such as they stand in (2.7).

We next turn to the case where tiere exist two sub-races X
and X(). The corresponding system of equations then becomes

()(p()--p) + .()(p()--p O,
()(q(’)--q) + ()(q() --q) 0,
(’)(r() r) + (")(r( --r) 0,

the las equation being here also dependent. Since this is the
case with m 3 > 2 g, in order that the equations are consistent,
the coefficient-determinant obtained from the first two must ne-
cesserily vanish, i.e. (p(’)--p)/(q()--q):=(p()--p)/(q(,-q). Then we
must evidently have further relations

(p()--p)/(p()--p) (q()-.q)/(q(:)--q) (r()--r)/(r(:)-r).
Conversely, if the last condition is satisfied,, the rate of mixture is
given by

(’_) p(’--p.( q(’-q r(’)-r )
There exists,, however, only an exceptional case where

p() p(") p, q() ,q(:) = q, r(’) r() r.
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In this case the numerator and the denominator in the right-hand
of the above relation vanish. But, as noticed generally, this is the
case where the composed population is born of two races with the-
same distribution. That the rate o’ mixture cannot be determined
from the given data only, is a matter of course.

We now point out an anthrological significance of the relations
obtained above for case g--3. Suppose that three races X(’, X(,
X() are mixed in certain rates long ago and constituted a population
X, but one of the sub-races, .X:) say, has ruined in mutable course
of long history, and the remaining two sub-races X’) and X) are
actually surviving separately from the composed population. Then,
if the distributions of genes in X(’), X(, X(’ and X are all known,
the above relations may be considered to give the rates of mixture.
However, the same relations imply a further interesting application.
In fact, suppose now that the distribution of the ruined sub-race
X) is unkown although the rates of mixture between three sub-
races is known; such a ase will happen rather often as a paractical
problem. We can then estimate the distribution of the ruined
sub-race inversely. For this purpose we have only to solve the
equatio.s (2.7) or the equivalent equations (2.6) with respect to
p(:), q(’) and r{’). Suppose again g’) + () + (’) 1, for the sake of
brevity, we thus have

(2.8)
pC:;) (p ),(,)pC,)_
q(,,) (q ()q(,) ,()q())/,(..)
re::) (r- g’)r(’) ()r())/(:‘)

--To be Continued--


