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3. Let (X, m) be a measure space where m is a finite, separable,
and complete measure” defined on a Borel field in X. A one-param-
eter group {¥,| —oo <t<+ o} of one-to-one mappings T, of X onto
X is called a flow on (X, m). A measurable function f(P) on (X, m)
is called an invariant function of a flow {¥,} on (X, m) if

F(T(P)=f(P)
almost everywhere on (X,m) for every fixed ¢ and it is called a
strictly invariant function of a flow {¥,} on (X, m) if it is defined
everywhere on X and

F(ELP)=F(P)
for all (P, t) such that PeX, —co<t<+o0. A measure-preserving
and measurable flow® {T,} on (X, m) is ergodic (in the sense of J.v.
Neumann) if and only if all its invariant functions are equivalent®
to constants on (X, m). If a flow {,} on (X, m) is measure-preserv-
ing and measurable, then we can associate with it a one-parameter
group {Ul,| — o <t<+4 oo} of unitary transformations U, on L* X, m)
by

WSNP)=f(Z(P) feL(X,m), PeX

and U, is continuous as a function of ¢ in the strong topology of U,.*

If X is a Lebesgue measurable subset of a Euclidean space R’
and m is the usual Lebesgue measure in R” defined for all Lebesgue
measurable subsets of X, a flow on (X, m) is simply called a flow on
X in the following and we write simply LX) for L* X, m).

4. We consider the Hamiltonian system with a parameter s

(9) dp/dt=—aH|oq(p, q,s) dq/dt=0H]op(p,q, s)-
By Assumption 1, the solution of (9)
(10) p=p(¢, 0’ ¢ s) a=q(, 9", 9)

in the open set I(s) for a fixed s (a<Xs=<b) with the initial conditions
(p,9)=(" ¢°)(p°, ¢°)e I(s)) at t=0, can be uniquely prolonged for the

1) For the definition of complete or separable measure, cf. P. Halmos [1].

2) For the definition of a measure-preserving, a measurable or an ergodic flow on
(X, m), cf. E. Hopf [2, pp. 89 and p. 28].

3) Two measurable functions on (X, m) are called equivalent on (X, m) if they coin-
cide almost everywhere on (X, m).

4) For definitions and results concerning flows on a measure space used in this
paper, cf. E. Hopf [2].
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whole time interval —o<t<+o and (p(t,»° 4" s), q(t, P°, @°, 8))
eS(J,s) for —oco<t<+oo if (p° q°)eS(J,s), since H(p,q,s) is an
integral of (9), S(J,s)={(p,q)| H(p, q, s)=C€(J, 3), (p, 9)eG,} and S(J, s)
is compact for J}¥>J>J*, b=s=a.> Also p,(¢, »°, 4" s), q.(¢, »° ¢°, 8)
eC'[(— o, +o)XD] i=1,---,n> We denote by T the one-to-one
mapping of I(s) onto I(s)

(11) % 4" )~ (&, 2%, ¢, 9), a (¢, p°, ¢°, 8)).

Then {T® | —oo <t< -+ oo} constitutes a flow F, on I(s) for a<<s<\b,
since the right sides of (9) do not contain the time ¢ explicitly.
The flow F, on I(s) is measure-preserving and measurable since (9)
is a Hamiltonian system® (Theorem of Liouville) and p,(¢, 9°, ¢° s),
q.t, 0% @° 8) (i=1,---,n) has sufficient regularities.

Since T transforms S(J,s) onto S(J,s) T® induces a one-to-one
mapping T of S(J,s) onto S(J,s). {T{?| — o <t< -+ o} constitutes
a flow F, , on the measure space (S(J,s), m, ,) for Jy¥>J>J¥ b=s
=a.

LEMMA 2. The flow F, , on (S(J,s),m, ,) is measure-preserving
and measurable for J}¥>J>J¥ b=s=a.

We shall give a proof of this lemma in Part IV of this paper.

Also we consider the one-to-one mapping 7', of D onto D defined

by
(12) (»°, @°, 8)—>(P(t, »°, ¢°, 8), q(t, D°, @°, $), 8).
{T,| — oo <t<+ o} constitutes a flow F on D. From the fact that
the flow F, on I(s) is measure-preserving and p(¢, p° ¢°, s), q (¢, 2°, ¢°,
s) are sufficiently regular, it follows easily that the flow F on D is
measure-preserving and measurable. Then we have

THEOREM 2. For any fixzed s (b=s=a) the two following condi-

tions i) and ii) are equivalent:
i) Ewery invariant function f(p,q) of the flow F, on I(s) is equiv-
alent on I(s) to a function of the form o(H(p,q,s)) where o(E) is
a measurable function of E for the interval €(J3F,s)>E> E(J}*,s).
ii) The flow F; , on (S(J,s), m,; ) is ergodic for almost all J in the
interval JF>dJ >JF.

We shall give a proof of this theorem in Part IV. This theorem
is not used for the proof of our main theorem (the adiabatic theorem).
It is laid here only to clarify the meaning of the following Assump-
tion 3.

5. Now we put a further

ASSUMPTION 3. The condition i) in Theorem 2 (equivalent to
the condition ii) im Theorem 2) ts satisfied at almost all s in the
interval a<s=b.

5) Cf. E. Kamke [3, pp. 135-136 and pp. 161-164].
6) Cf. E. Kamke [3, pp. 155-161].
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We can easily prove that Assumption 8 is also equivalent to
the following proposition: For almost all s in the interval a <s=<b,
every invariant function f(p,q) of the flow F, on I(s) is equivalent

on I(s) to a function of the form ¥(5(p,q,s)) where ¥(J) is a
measurable function of J for the interval Jj¥>J>J*.

LeMMA 3. If an tnvariant function f(p,q,s) of the flow F on
D belongs to L¥(D), then

ff(pv q, S) aa—isi(‘ (p, q, 3)dpdqu=0.7)
D

PrROOF. We can assume that f(p,q,s) is a strictly invariant
function of the flow F on D since for every invariant function of
the flow F on D, there is a strictly invariant function of the flow F’
on D equivalent to it on D.* Then for almost all s in the interval
b=s>a, f(p,q,s) as a function of (p, q) is an invariant function of the
flow F, on I(s) and so by Assumption 3 is equivalent on I(s) to a
function of the form ¥ (3(p, q, s)) where ¥(J) is a measurable func-
tion of J on the interval J¥>J>J*.

Hence

f 7 %—‘?dpdqu: f "( f 7 %?—dpdq)ds
D @ I

[ D Yo

J1* S(J,8)

— f ”{ [ ”'1;,,(.])( JJ ) aa_‘czde, ,)dJ}ds:O

J1*
by Fubini’s Theorem, Lemma 1, and Theorem 1. Q. E.D.
Now we consider the one-parameter group {U,} of unitary trans-
formations on L* D) associated with the flow F on D. We define
Af by

(13) “ ULt a5

D)
-0 (t—->0)
D

for all fe L% D) for which such Af exists. Then by a theorem of
Stone, A is a self-adjoint operator (in the sense of J.v. Neumann)
on L*D) and U,=e* in the sense of the operator calculus.!” We
denote the domain and the range of A by D(A) and by R(A) respect-
ively. For a function fe Cj(D°), we define f=0 on D—D°' for

7) Here the bar means the complex conjugate.

8) Cf. E. Hopf [2, pp. 27-28].

9) || ||p means the norm in L*D).

10) Cf. F. Riesz and B. Sz.-Nagy [4, pp. 383-385].

11) If we denote for each s the set (p, g, 8) | (p, @) I(s)} by I(s), then D—D’=1I(a)

U I(b) since D is relatively open in K.
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convenience sake in the following. Then Cj(D°)C L% D) and also C;(D"°)
CCY(D). By calculating explicitly the Af in (13) for feCy(D"), we
have easily

LEMMA 4. If feCXD"), then feD(A) and

Af=—i(f, H)=uH, f).”*

Now we prove a lemma which is useful for some applications
of Stone’s Theorem.

LEMMA 5. Let L be a self-adjoint operator on an abstract com-
plex Hilbert space . Let {V,|— oo <t<+ oo} be the strongly continu-
ous ome-parameter group of unitary transformations V,=e** on 9.
We put R={f|feD(L), Lf=0}. Then N is a closed linear subspace
of 9. We denote by N+ the orthogonal complement of N in H. Let
B be a linear (not necessarily closed) subspace of 9, invariant for the
group V,, that 1is, such that, V(B)=T for all t. Also let BC D(L)
and B=9. Then we have L(W)=N+1®

PROOF. R(L)=N‘ since L is self-adjoint in . Hence L(W)CN-L.
Also L(®) is a closed linear subspace of $. Let us assume that
L(®)x:NL. Then there exists an element feNL such that f3-0 and
(f,Lg)=0 for all ge®. Now we have for all ge® and for all ¢

L, vo=tim (£, VelVO=V)_ (5, i1y q)

dt 4t 0 A4t
since V,geBCD(L)*™ by geB, V,(B)=W and WCD(L). From this,
we have for all ge® and for all ¢

d —
':l?(fy Vtg)_‘o

since (f,1LV,9)=0 by the assumed properties of f and V,ge%W.

Therefore for each ge®, (f,V.,9) and so (V.f,9q)(=(f,V_.9)
are constants for — oo <t<+ o0 so that (V.f—f, 9)=(V, f—V,f,9) =0
for all ge® and for all t. Hence V,f=f for all t since W=49.
From this, it follows easily that fe®(L) and Lf=0" so that fel.
Hence f=0 since also fe®! by the assumption. This contradicts
the assumption that f30. Q.E.D.

We return to the discussion of the group {U,} of unitary trans-
formations associated with the flow F. We denote by N the set of
all invariant functions of the flow F on D belonging to L*D). N
coincides with the set {f|feL*D),f=U,f —oo<t<+owo}={f]|f
€D(A), Af =0} Hence N is a closed linear subspace of L* D). Also

- of o0 o9 of
12) If f, g€ CY(D), we denote by (£, g) the Poisson bracket "E(api P o )

13) D(L) and R(L) are the domain of definition and range of L respectively. L(%)
and V() are the images of W by L and V, respectively.

14) Cf. F. Riesz and B. Sz.-Nagy [4, pp. 383-385].

15) The last identy follows easily from the spectral representations of {U;} and A,
Cf. F. Riesz and B. 8z.-Nagy [4, pp. 383-385].

n
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we denote the orthogonal complement of N in L*D) by N+i. Then
we have

LEMMA 6. A[C}(D")], the image of Cj(D") by A, is contained
and 18 dense in N*L.

PROOF. C}(D") is dense in L* D) as is well known. Also by
Lemma 4 we have Cj(D°)CD(A). Further we have U,(C;(D")=C;
(D" for all t(— oo <t< -+ o) since p,(t, 9°, ¢°, s) and q,(t, p°, @°, s)(i=1,
---,m) all belong to C'[(—oco, +o0)XD] and T(D")=D" for all t.
Therefore we get the desired result by Lemma 5.

Now we prove the most important lemma of this Part II.

LEMMA 7. For any €>0, there is a function fy(p,q,s)eCi(D")
such that

| s -3

D

PROOF. By Lemma 3, we have 33/ase N, if 93/ds is considered
as an element of L*(D). Hence by Lemma 6, for any >0, we have
a function fJeC}(D") such that

,_ 93
H A s

D

Therefore if we put f,=1f], we get the desired result, since we have
Afy=1(H, f,)

for f,eCy(D"), by Lemma 4. Q.E.D.
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