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On the Adiabatic Theorem [or the Hamiltonian System o
Differential Equations in the Classical Mechanics. I

By Takashi KASUGA
Department of Mathematics, University of Osaka

(Comm. by K. KUNUGI, M.J.A., July 12, 1961)

Introduction. In this paper, we shall use the following abbre-
viations:

p--(p," ", p), q=(q,,. ., q), (79, q)=(p,--., p,, q,---, q,)
dp/dt=(dp,/dt,. ., din dq/dt=(dq/dt,. ., dqJdt),
H/p----(H/p,. ., H/p), H/q=(H/q,. ., H/q)
dpdq=dp. .dp.dq. .dq.

Let H(p, q, s) be a Hamiltonian containing a parameter s
Roughly speaking, a quantity I(p, q, s) which is a global integral of
the system
1 ) dp/dt----3H/q(p, q, s), dq/dt=3H/p(p, q, s)

for every fixed s (l:>sO), is called an adiabatic invariant of (1),
if I(p, q, t/a) is conserved along all (nearly all)’ trajectories of the
following system
( 2 ) dp/dt=--H/3q(p, q, t/.), dq/dt=H/3p(p, q, t/)
in the whole interval of time 0ta, asymptotically for
The fundamental case of the adiabatic theorem in the classical
mechanics is the case where (1) has no one-valued Lebesgue measura-
ble global integral other than the functions of the energy integral
for almost all s (ls0).) In this case, the phase volume

(p, q, s)-f dpdq
IE

where I, means the domain in (p, q)-space enclosed by the energy
surface S,,={(p, q) lH(p, q,s)=E} of (1) passing through (p, q), is
one (and essentially the only one)) adiabatic invariant. In the follow-
ing, we shall call this proposition the adiabatic theorem.

The adiabatic theorem plays an important rSle not only in the
statistical mechanics, but also in various other branches of physics.
But as far as we know, satisfactory proofs of the theorem exist

1) Here the word "nearly all" is used in a vague sense.
2) The cases where this assumption does not hold, can be reduced to this funda-

mental case if the reductions as given in T. Levi-civita [7] are possible and the reduced
system satisfies an assumption similar to this assumption. Cf. T. Levi-civita [7], also
H. Geppert [1].

3) The "only one" part of the adiabatic theorem shall be treated in Part IV of
this paper.
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only for very special cases where essentially only one pair of canoni-
cal variables (Pl, ql) occurs.)5) In this paper, we shall give a precise
formulation of the adiabatic theorem in the general case and prove it
by the aid of the operator method in the classical mechanics of J.v.
Neumann and B.O. Koopman2

For convenience sake, we change the scale of time in (2) putting
t’-t/ and dscuss the asymptotic behaviour for -+o of the tra-
jectories of the transformed system
( 3 ) dp/dt’----aH/aq(p, q, t’) dq/dt’--aH/3q(p, q, t’)
in the interval lt’_0 instead of that of (2)in the interval t0.

In Part I of this paper, we shall determine the region D in
R/ such that the adiabatic theorem shall be stated for the tra-
jectories of (3) lying in it and shall study the properties of the phase
volume function (p, q, s) in D. In Part II, we shall study the flows
(StrSmungen in the sense of J.v. Neumann) defined by (1) and the
infinitesimal generator iA of the unitary group { Ut o <: t <: + o }
associated with one of the flows. In Part III, we shall state and
prove a form of the adiabatic theorem (in Section 8), under Assump-
tions 1 and 2 stated in Section 1 and Assumption 3 stated in Section
5. In Part IV, we shall state and prove a more satisfactory form
of the adiabatic theorem and some discussions of the results obtained
shall follow it. Also in Part IV, we shall prove some lemmas and
theorems stated but unproved in Parts I and II.

Notations. If B is a subset of a Euclidian space or a subset
of a Hilbert space, we denote by B, the closure of B in the space
and by B the set of all inner points of B in the space. In this
paper a function is always complex-valued, if not specially mentioned.
We denote by C(B), the set of all m times continuously differentia-
ble functions on B if B is a subset of a Euclidian space such that
BB and by C(B) the set of all m times continuously differentiable
functions on B vanishing outside compact sets contained in B, if further
B is open in the space. Also we write C(B), Co(B) for C(B), C:(B).

1. We shall call a subset of a subset B of a Euclidian space
relatively open in B if it can be considered as an intersection of an
open set in the Euclidian space with B.

We denote by K the point set {(p, q, s) oo p< + oo, oo q
<+oo i--1,...,n,asb} in R/ where a and b are two fixed

4) For these special cases, cf. H. Kneser [4], A. Lenard [6], Y. Watanabe [10].
5) The arguments in T. Levi-civita [7] only make the holding of the adiabatic

theorem for the general case probable. He and other authors proved various generali-
zations of Theorem 1 of this paper but they did not prove the adiabatic theorem itself
for the general case. Cf. T. Levi-civita [7], H. Geppert [1], G. Mattioli [8].

6) Cf. J. v. Neumann [9], B. O. Koopman [5] and E. Hopf [2].
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real numbers such that a<b.
ASSUMPTION 1. The point set in R2n+ where the real-valued

function H(p,q,s) is defined, contains a subset G of K relatively
open in K satisfying the following two conditions:

i) H, aHias, aHlap,, aHlaq,, a"Hlap,aq, a’-H/asap,, a-Hiasaq, (i, -1,
.., n) exist and are continuous on G. Also

]{(aH/ap,) +(aHiaq,)}#o on G.
i=1

ii) We denote by G, the open set [(p, q) (P, q, s)e G} in (p, q)-space
and by Se. the set [(p, q) H(p, q, s)--E, (p, q)eG,} in G,. Then for
each s (asb), there is an open interval
E,<E---o) on E-line such that Se., is non-void and is a closed
(2n-1)-dimensional C-submanifold of R" enclosing a domain I. in
R for each Ee F, and G- U S,,.

Under Assumption 1, we can prove after some topological con-
siderations that two alternative cases occur: A) I,.,S,., for all E.,
E, s such that asb, E,<E<E.<E[ or B) Ie,.,S,,, for all E,
E,, s such that asb, E,<E<:E.<E[. We shall assume in the
following that the former case A) occurs. The later case B) can be
treated just in the same way. Then we can also prove the following
two consequences iii), iv) of Assumption 1.

iii) I,,,I,.,-I,,,US,,, for all E,E,s such that agsb,

E,<E<E< E[. We put I,.,,,-- I,, ,-- I,, for such E, E., s. Then
I,....,-- [J Se., and

and I,,.,, is compact. The point set A-- [(E, s) lasb,
in (E, s)-plane is relatively open in the point set {(E, s) asb

oo < E< ncoo in (E, s)-plane.
iv) If we put

3(E, s) f dpdq
IE,

then (E, s)C(A) and /EO for (E, s) A.
We omit the proof of these results and assume the results since

such considerations are not the main purposes of this paper.
By iv), if we put J,--lim 3(E,s) and J[--lim 3(E,s), then the

EE

point set A’-- {(J, s) asb, J, J< J’,} is relatively open in the point
set {(J, s) asb, o <J -o in the (J, s)-plane and if (J, s)
the equation J--3(E, s) can be solved uniquely for E. If we denote
the solution by E----(J,s), (J,s)C(A’) and /JO for (J,s)A’.
Also if we put (p, q, s)--3(H(p, q, s), s), then we have from i) of
Assumption 1
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3(p, q, s)e C’(G),

on G.
ASSUMPTION 2. There are two numbers J*, J* independent of

s such that J[’J*>J*>J, for all s in the interval asb.
In the following, we shall fix such a pair of J* and J* once for

all. We put S(J,s)--S(.,).,--[(p, q)](p,q)eG,, (p, q,s)-J}, I(J,s)

for J, J, J., s, such that as<b, J*JJl* and J*J.:>JJ*.
We a so put

{(p, q, s) Osb, (p, q)e I(s)}- {(p, q, s) (P, q, s)e G, J* >(p, q, s) > Jl*},
D(J)-- [(p, q, s) a s

_
b, (p, q)e I(J, s)], W(J)-- [(p, q, s) a s b, (p, q)

eS(J,s)]-[(p,q,s)l(p,q,s)eG, 3(p,q,s)-J] for s,J such that asb,

J*JJ*. Then D is relatively open in K since (p,q,s)eC(G).
Also we can prove the following consequence v) of Assumptions 1
and 2.

v) D(J) is relatively open in K and D(J), W(J), are compact

and D(J)--D(J)U W(J), n--n[J W(J*)[J W(J*) for J*JJ*.
We omit the proof of v) and assume v) by the same reason as

before.
2. In this paper, a function is always complex-valued if not

specially mentioned.

A measure space (X, m) is a pair of a set X and a measure m
defined on a Borel field in X. When X is a Lebesgue measurable
subset of a Euclidian space R and m is the usual Lebesgue measure
in R defined for all Lebesgue measurable subset of X, we shall
often omit the explicit indication of the measure m and for example
a function on X is simply called measurable or integrable on X in
the following if it is measurable or integrable on the measure space
(x, m).

LEMMA 1. There is a unique measure m,, defined for all Borel
sets) on each S(J, s)(as_b, J* >J>J*) such that

(4) djd f f(p, q)dpdq--f f(p, q)dmv
I(Jl*,J,s)

for every function f(p, q)eCoI(s). We denote the completion of
ma., also by mv, . Then for any integrable (or non-negative measur-

able) function f(p, q) on I(s), f(p, q) is integrable (or non-negative
measurable) on the measure space (S(J, s), ma,,) for almost all J (J*
>JJ*) and

7) A Borel set on S(J, s) is a subset of S(J, s)belonging to the Borel field on
S(J, s) generated by all relatively open subsets of S(J, s).
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f(p,

is integrable (or non-negative measurable) with respect to J in the
interval J* >J;* and

(5) f f(p, q)dpdq=f‘]’*(f f(p, q)dm‘].,)dJ.
I(s) ‘]* s(‘],s)

Also

(6) f dm.,8--1.
8(,] ,s)

We shall give a proof of this lemma in Part IV.
Now we give a rigorous proof of the following theorem which

is well known in the classical statistical mechanics.
THEOREM 1.

3 (p,q,s)dmj --0
8(J,s)

for J* >J ;> J* and bsa.
PROOF. We take any function (J)e Co[(J*, J*)J and put

G(J)---- ?(J’)dJ’ for J2* :>JJ*.
J

Then G(J)eC[(J*, J*)], dG/dJ--(J) and there exist two numbers
J and J2 such that J2* > J2>J>J* and

G(J)-O for J* >JJ.o
G(J)-G(J1) for JJJ*.

If we define a function F(p, q, s) on K by

F(p, q, s)-G(3(p, q, s)) for (p, q, s)e D
F(p, q, s)--O for K--D(J*)
E(p, q, s)-G(J) for n(J*),

then by the consequence v) of Assumptions 1 and 2 in Section 1,
F(p, q, s) belongs to CI(K) and vanishes for all (p, q, s) with suffi-
ciently large P 12+lq 12.

Now by Lemma 1 and the properties of G(J) and the definition
of F(p, q, s), we have for asb

fF(p,q,s)dpdq=fG((p,q,s))dpdq+f G(J)dpdq
|a l(s) l(Jl*

f’"(f q, s))dm,,)dJ+J*.a(J,)=f’b(J)dZ+J,..e(J,).
Ja* 8(J,s) J*

Hence we have for asb
d f F(p, q, s)dpdq--O.(7)
ds

On the other hand, also by Lemma 1, we have for asb
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(8)
dG dm )dJ

From (7) and (8), we have

8S
Jr*

for all (asb) and all 9(J)CoE(J*, d*)3. From this, by a well-
known standard argument we can get the desired result. Q.E.D.
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