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81. On the Bend of Continuous Plane Curves

By Kanesiroo ISEKI

Department of Mathematics, Ochanomizu University, Tokyo
(Comm. by Z. SUETUNA, M.J.A., July 12, 1961)

In the theory of functions of a real variable there is a beautiful
theorem of importance due to S. Banach (cf. Saks [2], p.280):

THEOREM OF BANACH. Let F(x) be a continuous real function
on a linear closed interval I and let s(y) denote for each real number
y the (finite or infinite) number of the points of I at which F' assumes
the value y. Then the function s(y) is B-measurable and its integral
over the real line coincides with W(F; I), i.e. the absolute variation
of F over I

The condition that I is a closed interval is not essential for the
validity of the assertion. With slight modifications in the proof we
have the same result even when I is an arbitrary interval of real
numbers; only we then interpret W(F';I) as the weak variation of
F over I (defind on p.221 of Saks [2]).

We established in our paper [1] certain basic properties of a
geometric quantity called curve bend. It is the object of the present
note to obtain an analogue of the Banach theorem for the bend of
a plane curve determined by an equation of the form y=F'(x), where
again continuity is the sole condition that we impose upon the func-
tion F. Though our theorem is similar to that of Banach in enunci-
ation, the proof turns out far more complicated in our case. We
presuppose complete knowledge of [1] on the part of the reader.
The precise statement of our theorem reads as follows:

THEOREM. Let us define p(f)={cos 8, sin §) for the points 6 of
the interval K=[—n=/2,/2]. Given on a linear interval I, (of any
type) a continuous real function F(x), let f(0) denote for each fec K
the mumber (finite or infinite) of the points of I, at which the unit-
vector p(d) is a derived direction (see [1]842) for the curve ¢ defined
on I, by ¢(x)={z, F(x)). Then f(0) is a B-measurable function on
K and its integral over K coincides with Q(p), i.e. the bend of ¢.

All the notations of this theorem will be retained throughout
the rest of the present note. Since the function p(d) is continuous
and biunique, so is also its inverse function p~!, which maps the
semicircle p[ K] onto the interval K. It is immediately seen further
that if 6, and 6, are any pair of points of K, then the angle p(8,) p(6,)
is equal to |6,—@,| (see [1]§21).

This being so, let us begin by proving the following analogue of
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the Banach theorem for curve length.

LEMMA 1. Suppose that ¥(t) is a continuous curve defined on
a linear interval J, and situated in the semicircle p[K]. For each
point 6 of K, let g(0) denote the number of the points of J, at which
Y assumes the value p(6). Then g(0) is a B-measurable function on
K and its integral over K coincides with A(Y¥), i.e. the spheric
length of .

REMARK. Since ¥ is continuous, A(Y) is equal to the ordinary
length of Y on account of [1]8§76. For our purpose, however, it is
more convenient to consider A(Y).

PrRoOOF. For each point ¢ of J, let G(¢) stand for the inverse
image of the point ¥ (t) under the mapping p. Then G is a continu-
ous function on J, with values belonging to K, and we find at once
that W(G; J,)=A(¥; J,). Furthermore it is obvious that g(6) coincides
for each #c K with the number of the points of J, at which the
function G assumes the value 6. The assertion follows now at once
from the theorem of Banach.

DEFINITIONS. Let T'(x) be a real-valued function on I, and let
¢ be any point of I,. (As we have alreadys observed, every notation
of our theorem will keep its meaning in the course of our argument,
so that I, always denotes a linear interval of any type.) An infinite
sequence J;, J,,--- of closed intervals will as usual be termed to tend
to ¢ iff (i.e. if and only if) every J, contains ¢ and further |J,|—>0
as n—>-+oco. Now let & be an extended real number, i.e. a real number
or +=oco. We shall say that £ is a derived number of the funection T
at the point ¢ iff there exists in I, an infinite sequence J,, J,,--- of
closed intervals tending to ¢ and such that T'(J,)/|J,| >¢ as m—>+ .
It is evident that this is the case when and only when p(Tan™'¢) is
a derived direction at ¢ of the curve t defined for zel, by r(x)=<z,
T(x)>. (The symbol Tan"' denotes the principal value of the inverse
tangent belonging to the interval K=[—=/2, r/2], where and sub-
sequently we understand + o by tan(z/2) and — o by tan(—=/2)).
Finally, given a triple &, &, & of extended real numbers, &, will be
termed to lie between &, and &, iff we have one or both of the
relations &, <&, <&, and §,=§&=6,.

LEMMA 2. Let ¢ be an interior point of the inmterval I, and
suppose that the function F of the theorem possesses at ¢ unilateral
derivatives on the right and left, denoted by a and B respectively.
In order that an extended real number & be then a derived number
of F at ¢ it is necessary and sufficient that £ should lie between a
and B.

PrROOF. We shall confine ourselves to the case a<fS. Consider
in I, an arbitrary pair of closed intervals P and @ of which ¢ is
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the right-hand and the left-hand extremity respectively. If these

intervals are sufficiently short, then F/(P)/|P|>F(Q)/| Q| and so
F(P)/|P|>F(P-Q)/|P-Q|>F@Q)/|Q].

The necessity of the condition is an immediate consequence of this.

Consider next a fixed value &, such that a<&,<B. We proceed
to associate with each natural number » a closed interval [a,, b,]CI,
and a real number 1, so as to fulfil the following two requirements:
(i) a,<c<b, and b,—a,<n?; (ii) if we write H,(x)=F(x) —&x—2,
for every point x of I, then H,(a,)<0, H,(b,)<0, and H,(c)>0. For
this purpose we need only choose firstly [a,, b,]CI, sufficiently short
in order to secure condition (i) and to fulfil further the two inequali-
ties F(c)—F(a,)>¢&(c—a,) and F(b,)—F(c)<&yb,—c).

Indeed F(c)—é&,c then exceeds A=max[F'(a,)—&a,, F(b,)—&b,], and
so there exists a 2, such that F(c)—&,c¢>2,>A. But the last re-
lation is plainly equivalent to condition (ii).

On account of the intermediate value theorem there then exist
two points %, and v, such that a,<u,<c<v,<b, and H,(u,)=H,(v,)=0.
If we now write for brevity J,=[u,,7v,], then J,,J,--- constitute
a sequence of closed intervals lying in I, and tending to the point
¢, and we have F(J,)/|J,|=¢&, for every n. This shows that &, is
a derived number of F' at ¢. As, moreover, both « and 8 are obvi-
ously derived numbers of F' at ¢, we conclude that the condition of
our lemma is sufficient.

LEMMA 3. Given in I, a triple of points a<c<b and given a
pair of real coefficients A and B, let us write H(x)=F(x)—Ax—B
for each point x of I, If H(a)<0, H(})<0, and H(c)=0, then the
open interval (a, b) contains a point at which A is a derived number
for the function F.

ProoF. 1) Consider first the case H(c)>0. We may suppose
H(a)=H(b)=0. For, if H(a)<0 for instance, there is by the inter-
mediate value theorem a point a’ fulfilling both a<a’<¢ and H(a')=0,
and we need only replace the point a by a@’. Now the function H
attains its maximum on [a,b] at some point ¢’ of [a,b], where we
must have a<¢’<b since the assumption H(c)>0 implies H(c')>0. It
clearly suffices to show that zero is a derived number of H at this
point ¢’. For this purpose we may assume ¢’ to be a point of strict
maximum for H, and the result then holds by the intermediate value
theorem.

2) It remains to deal with the case H(c)=0. By what has just
been proved in part 1) we may suppose H(x) nonpositive everywhere
in the interval [a,b]. Then H attains at the point ¢ its maximum
on [a,b], and the assertion easily follows by arguing as at the end
of part 1).
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LEMMA 4. Given in I, a triple of points a<c<b, let us write
P=[a,c] and Q=[c,b]. Then each real number & which lies between
the two quotients F(P)/| P| and F(Q)/| Q| ts a derived number of F
at some point of the open interval (a,b).

PROOF. We may suppose F(P)/|P|=&=F(Q)/| Q| without loss
of generality. Write B=F(c)—¢&c and define H(x)=F(x)—&tx—B for
each point xel,, Then H(c)=0 and further H(a)=|P|é—F(P)<0,
Hb)=F(@Q)—|Q|£=<0. Lemma 3 shows now at once the truth of the
assertion.

LEMMA 5. For each subset E of I, let M(E) denote the set of
the points @ of K such that p(f) is a derived direction of the curve
¢ at some point of E, or equivalently, such that tan @ is a derived
number of the function F' at some point of E. Then the set M(E)
18 convexr whenever E i3 a one-point set or an open interval.

REMARK. As is almost evident, a nonvoid set of real numbers
is convex iff it is either a one-point set or an interval. We shall
retain the symbol M(E) throughout the rest of this note.

PROOF. We have to ascertain that every closed interval [4,, 6,]
with extremities belonging to M(E) is necessarily contained in M(E).
Suppose 6, <8,<0, for this purpose and write £,=tan 6,(¢=0, 1,2) for
short, so that &, <§&,<é&,.

1) Consider first the case where E consists of a single point c.
Since both & and &, are derived numbers of F' at ¢, there exists in
I,, for each positive number ¢, a pair of closed intervals P,=[a,, b,]
(t=1,2) which contain the point ¢, have lengths <e¢, and fulfil the
relation F(P,)/| P, |<&<F(P,)/|P,|. We now attach to each point
t of [0,1] a closed interval J,=[a,(1—t)+a,t, b,(1—2)+b,t], so that
cedJ,CI, and |J,|=|P,|(1—t)+| Pyjt<e. Then the function ¢ defined
by &@t)=F(J,)/|J,| for te[0,1] is continuous and we clearly have &(¢—1)
=F(P,)/| P,| for both i=1 and 2. Consequently there is in (0,1) a
point ¢, for which &(¢,)=¢&,. Since ¢ is arbitrary, it follows that &,
is a derived number of F' at ¢, or equivalently, that 6,¢ M(E). This
completes the proof for E={c}.

2) We pass on to the case where E is an open interval. By
definition of M(E') there is in E a distinct pair of points ¢, and ¢,
such that & is a derived number of F' at ¢, for 1=1,2. We then
can choose in E a disjoint pair of closed intervals I, and I, contain-
ing the points ¢, and c, respectively and satisfying F(I,)/|I,|<&,
<F(I,)/|I,]. Let I; be the closed interval that abuts both I, and I,,
so that &, lies either between F(I,)/|I,| and F(I;)/| I,| or between
F(,)/|I,| and F(Iy)/|I;]. It follows from Lemma 4 that &, is a
derived number of F' at some point of E, or what amounts to the
same thing, that 6,c M(E), Q.E.D.
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LEMMA 6. The function f(6) is B-measurable and Q(¢p) does not
exceed twice the integral of f(6) over K.

PrROOF. Given any natural number =, let us decompose the
interval I, into a disjoint sequence 4, (finite or infinite) each of whose
elements J is either a one-point set or an open interval with length
smaller than n~!. Let further S.(#) denote for each subset E of I,
the characteristic function of the set M(E). Since S,(f) is a B-
measurable function of § for every element J of 4, by Lemma 5,
so must also be the sum of S,(d) for all J. On the other hand,
writing f,(6) for this sum, we easily verify that f,(6) > f(6) at each
point @ of the interval K as n—>-+oo. This proves f(6) to be a B-
measurable function on K.

Let us now insert in I, an arbitrary sequence x,<x,<:-:<Z,.,
of n+2 points, n being any natural number. To shorten our nota-
tions we put Q,=[z, ,,z;] and R,=(x, ,,%,,,), where and below the
index 7 ranges over 1,---,n+1 and j over 1,---, n. Then every M(R,)
is a convex set on account of Lemma 5. The function S;(6) defined
above will conveniently be written S(6; E) in what follows. Noting
that then S(6; R,)+---+S(6; R,) <2f(0) for every §cK as is easily
seen, we deduce at once, with the help of Lemma 4, that

S[0(@)o 4@, =) M(R) = [ T55(0; B)ldo <2 | (o).

This implies the inequality of the assertion, since Q(¢) is the supre-
mum of the leftmost sum in the above relation for all choices of
the sequence x,,---,,, ;-

PROOF OF THE THEOREM. On account of Lemma 6 we may assume
Q(p) finite. For any interval IC I, endless on the right [or on the
left] (see [1]872), the restriction of the curve ¢ to I must be CF
on I [or C* on I] in virtue of [1]8§80. It thus follows easily, in
view of [1]8§82, that we need only consider the case where the in-
terval I, is endless and where therefore ¢ is C** on I,, We then
have Q(¢)=A(¢®) by the theorem of [1]§96. Consequently our theo-
rem will be established if we show A(¢%)=A, where and subsequently
A denotes for brevity the integral of f(d) over K.

Now we find by [1]883 that the curve ¢F is right-hand continu-
ous and that ¢®(x—)=¢"(x) everywhere in I,. Hence the equality
o*(x)=¢"(x) is equivalent for each zel, to continuity of ¢* at z. It
follows from the proof of [1]878 that, at each point u of continuity
of ¢, the curve ¢ has a tangent direction $(u) equal to ¢*(u)=¢"(u),
so that @(u) is a unique derived direction of ¢ at u. If, therefore,
¢F is a continuous curve in particular, the relation A(¢®)=A is a
direct consequence of Lemma 1.

Let us pass on to the case in which the set N of the points of
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discontinuity for ¢® is nonvoid. Since N is countable on account of
rectifiability of ¢%, there exists by [1]§94 a continuous non-decreasing
function W(t), defined on an endless interval J, and mapping J, onto
I,, and such that the inverse image W~ !(x) of a point z of I, is a
non-degenerate set, and hence a closed interval, when and only when
2e N. Such an interval will as usual be called interval of constancy
(of the function W). We proceed to construct a continuous mapping
Y¥(t) of J, into the semicircle p[ K] as follows. Writing t*= W (t)
for short for any point £ of I,, we distinguish two cases according
as t*eN or not. In the latter case we put simply Y¥(f)=¢%(t*). In
the former case, on the other hand, write [a,b] for the interval of
constancy that contains the point ¢, and let 4, and 6, denote the in-
verse images, under the mapping p, of the distinet points ¢*(¢*) and
¢®(t*) respectively. Let us then set Y(t)=p(8,+(0,—0,)41), where 2
is determined by the equation t=a-+(b—a)i.

Thus defined on J, the spheric curve ¥ is easily seen to be con-
tinuous. Further, ¥ is biunique on each interval J of constancy of
W and fulfils A(Y; J)=¢"(t*)o@%(t*) for any point ¢ of J. In view of
the last relation we find without difficulty that A(¢®)=A(¥). Our task
thus reduces itself to proving A(Y¥)=A. Now let g(6) denote for e K
the number of the points of J, at which ¥ assumes the value p(6).
Then A(Y¥) equals the integral of g(d) over K in virtue of Lemma 1.
The proof will therefore be complete if we verify that g(6)=f(6)
identically. But this is an easy consequence of Lemma 2 by what
we have stated in the above about the curve .
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