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In the theory of functions of a real variable there is a beautiful
theorem of importance due to S. Banach (cf. Saks [2, p. 280):

THEOREM OF BANACH. Let F(x) be a continuous real function
on a linear closed interval I and let s(y) denote for each real number
y the (finite or infinite) number of the points of I at which F assumes
the value y. Then the function s(y) is B-measurable and its integral
over the real line coincides with W(F; I), i.e. the absolute variation
of F over L

The condition that I is a closed interval is not essential for the
validity of the assertion. With slight modifications in the proof we
have the same result even when I is an arbitrary interval of real
numbers; only we then interpret W(F; I) as the weak variation of
F over I (defind on p. 221 of Sake 2).

We established in our paper [lJ certain basic properties of a
geometric quantity called curve bend. It is the object of the present
note to obtain an analogue of the Banach theorem for the bend of
a plane curve determined by an equation of the form y--F(x), where
again continuity is the sole condition that we impose upon the func-
tion F. Though our theorem is similar to that of Banach in enunci-
ation, the proof turns out far more complicated in our case. We
presuppose complete knowledge of [lJ on the part of the reader.
The precise statement of our theorem reads as follows:

THEOREM. Let us define p(0)=(cos, sin for the points of
the interval K=[--=/2, /2. Given on a linear interval Io (of any
type) a continuous real function F(x), let f(#) denote for each
the number (finite or infinite) of the points of Io at which the unit-
vector p(#) is a derived direction (see lJ [}42) for the curve defined
on Io by (x)--(x, F(x)). Then f(#) is a B-measurable function on
K and its integral over K coincides with t2(), i.e. the bend of

All the notations of this theorem will be retained throughout
the rest of the present note. Since the function p(0) is continuous
and biunique, so is also its inverse function p-, which maps the
semicircle p[K] onto the interval K. It is immediately seen further
that if and . are any pair of points of K, then the angle p(#).
is equal to IOx--O[ (see E121).

This being so, let us begin by proving the following analogue of
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the Banach theorem for curve length.
LEMMA 1. Suppose that .(t) is a continuous curve defined on

a linear interval Jo and situated in the semicircle p[K]. For each
point of K, let g(8) denote the number of the points of Jo at which

assumes the value p(0). Then g(0) is a B-measurable function on
K and its integral over K coincides with A(), i.e. the spheric
length of .

REMARK. Since is continuous, A() is equal to the ordinary
length of on account of [1]76. For our purpose, however, it is
more convenient to consider A().

PROOF. For each point t of J0 let G(t) stand for the inverse
image of the point (t) under the mapping p. Then G is a continu-
ous function on J0 with values belonging to K, and we find at once
that W(G; J0)=A(; J0). Furthermore it is obvious that g(0) coincides
for each 0eK with the number of the points of J0 at which the
function G assumes the value . The assertion follows now at once
from the theorem of Banach.

DEFINITIONS. Let T(x) be a real-valued function on I0 and let
c be any point of I0. (As we have alreadys observed, every notation
of our theorem will keep its meaning in the course of our argument,
so that I0 always denotes a linear interval of any type.) An infinite
sequence J, J,--. of closed intervals will as usual be termed to tend
to c iff (i.e. if and only if) every J contains c and further
as n--> + co. Now let be an extended real number, i.e. a real number
or +__ oo. We shall say that is a derived number of the function T
at the point c iff there exists in I0 an infinite sequence J, J2,"" of
closed intervals tending to c and such that T(J)/]Jl- as n-->+ o.

It is evident that this is the case when and only when p(Tan-l)_is
a derived direction at c of the curve r defined for xelo by r(x)--(x,
T(x)). (The symbol Tan- denotes the principal value of the inverse
tangent belonging to the interval K----/2,/2, where and sub-
sequently we understand -o by tan(=/2) and --o by tan(--/2)).
Finally, given a triple $0, , 2 of extended real numbers, 0 will be
termed to lie between and 2 iff we have one or both of the
relations o 2 and o- 2-

LEMMA 2. Let c be an interior point of the interval Io and
suppose that the function F of the theorem possesses at c unilateral
derivatives on the right and left, denoted by a and respectively.
In order that an extended real number be then a derived number

of F at c it is necessary and su2cient that should lie between a

and .
PROOF. We shall confine ourselves to the case a<. Consider

in I0 an arbitrary pair of closed intervals P and Q of which c is
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the right-hand and the left-hand extremity respectively. If these
intervals are su$ciently short, then F(P)/I P IF()/I and so

F(P) / P I>F(PQ)/ PQ I>F(Q) / Q I.
The necessity of the condition is an immediate consequence of this.

Consider next a fixed value such that a<o<fl. We proceed
to associate with each natural number n a closed interval [a., b,JI
and a real number 2. so as to fulfil the following two requirements:
(i) a<c<b and b--a<n-; (ii) if we write H(x)----F(x) --oX--
for every point x of I0, then H(a.)<:0, H.(b.)<:0, and H.(c)>0. For
this purpose we need only choose firstly [a,, b,JIo sufficiently short
in order to secure condition (i) and to fulfil further the two inequali-
ties F(c)-- F(a)>o(C--a,) and F(b)--F(c)<o(b--c).
Indeed F(c)--oc then exceeds A--max[F(a,)--oa, F(b,)--ob], and
so there exists a 2, such that F(c)--0c>2,>A. But the last re-
lation is plainly equivalent to condition (ii).

On account of the intermediate value theorem there then exist
two points u. and v. such that a. <: u.<c<v.< b. and H,(u,) H,(v,) =0.
If we now write for brevity J,--[u, v,J, then J,J.,... constitute
a sequence of closed intervals lying in I0 and tending to the point
c, and we have F(J,)/I J, [=o for every n. This shows that is
a derived number of F at c. As, moreover, both a and fl are obvi-
ously derived numbers of F at c, we conclude that the condition of
our lemma is sufficient.

LEfI 3. Given in Io a triple of points a<c<b and given a
pair of real coecients A and B, let us write H(x)--F(x)--Ax--B
for each point x of Io. If H(a) O, H(b) O, and H(c) O, then the
open interval (a, b) contains a point at which A is a derived number

for the function F.
Paoo’. 1) Consider first the case H(c)O. We may suppose

H(a)-H(b)-O. For, if H(a)<O for instance, there is by the inter-
mediate value theorem a point a’ fulfilling both a< a’<: c and H(a’)----O,
and we need only replace the point a by a’. Now the function H
attains its maximum on [a, bJ at some point c’ of a, b], where we
must have a< c’< b since the assumption H(c) >0 implies H(c’)> O. It
clearly suffices to show that zero is a derived number of H at this
point c’. For this purpose we may assume c’ to be a point of strict
maximum for H, and the result then holds by the intermediate value
theorem.

2) It remains to deal with the case H(c)=O. By what has just
been proved in part 1) we may suppose H(x) nonpositive everywhere
in the interval a, b]. Then H attains at the point c its maximum
on [a, b], and the assertion easily follows by arguing as at the end
of part 1).
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LEMMA 4. Given in I a triple of points a<c<b, let us write
P--[a, c] and Q-[c, b]. Then each real number which lies between
the two quotients F(P) / P and F(Q) ] Q is a derived number of F
at some point of the open interval (a, b).

PROOF. We may suppose F(P) / P - F(Q) / Q without loss
of generality. Write B--F(c)--c and define H()--F(x)--x--B for
each point xeI. Then H(c)--O and further H(a)--IPI--F(P)O,
H(b)=F(Q)--IQI O. Lemma 3 shows now at once the truth of the
assertion.

LEMMA 5. For each subset E of I let M(E) denote the set of
the points of K such that p(8) is a derived direction of the curve

at some point of E, or equivalently, such that tan 0 is a derived
number of the function F at some point of E. Then the set M(E)
is convex whenever E is a one-point set or an open interval.

REMARK. As is almost evident, a nonvoid set of real numbers
is convex iff it is either a one-point set or an interval. We shall
retain the symbol M(E) throughout the rest of this note.

PROOF. We have to ascertain that every closed interval [, 0]
with extremities belonging to M(E) is necessarily contained in M(E).
Suppose 0<0o<0. for this purpose and write =tan0(i-0, 1,2) for
short, so that <0<..

1) Consider first the case where E consists of a single point c.
Since both and are derived numbers of F at c, there exists in
Io, for each positive number e, a pair of closed intervals P--[a, b]
(i--1, 2) which contain the point c, have lengths <:e, and fulfil the
relation F(P)/] P ]<o<F(Ps)/[ P2 ]" We now attach to each point
t of [0,1] a closed interval J--[a(1--t)-fa2t, b(1--t)-fb2t], so that
ceJIo and J I---] P I(1--t)q-I P_ It<:s. Then the function defined
by (t)-F(J)/IJl for te [0,1] is continuous and we clearly have (i--1)
--F(P)/I P for both i-- 1 and 2. Consequently there is in (0, 1) a
point to for which (t0)--o. Since s is arbitrary, it follows that o
is a derived number of F at c, or equivalently, that 8oeM(E). This
completes the proof for E-- {c }.

2) We pass on to the case where E is an open interval. By
definition of M(E) there is in E a distinct pair of points c and c2
such that - is a derived number of F at c for i=l, 2. We then
can choose in E a disjoint pair of closed intervals I and I2 contain-
ing the points c and c2 respectively and satisfying F(I)/I I1<o
<F(I2)/] I21. Let I be the closed interval that abuts both I and L.,
so that o lies either between F(I)/I I and F(I)/] I1 or between
F(L)/[ I21 and F(I)/I I I. It follows from Lemma 4 that 0 is a
derived number of F at some point of E, or what amounts to the
same thing, that 80eM(E), Q.E.D.



340 K. ISE: Vol. 37,

LEMMA 6. The function f(O) is B-measurable and t2() does not
exceed twice the integral of f(8) over K.

PROOF. Given any natural number n, let us decompose the
interval I into a disjoint sequence A, (finite or infinite) each of whose
elements J is either a one-point set or an open interval with length
smaller than n-. Let further Ss(0) denote for each subset E of I0
the characteristic function of the set M(E). Since Sz(0) is a B-
measurable function of t? for every element J of z/. by Lemma 5,
so must also be the sum of Sz(t0 for all J. On the other hand,
writing f() for this sum, we easily verify that f()-f() at each
point of the interval K as n-->+ o. This proves f(0) to be a B-
measurable function on K.

Let us now insert in I0 an arbitrary sequence Zo<Z<... <z/
of n-2 points, n being any natural number. To shorten our nota-
tions we put Q-x_,x and R--(x_, x+), where and below the
index i ranges over 1,..., n+l and j over 1,--., n. Then every M(R)
is a convex set on account of Lemma 5. The function Ss(t0 defined
above will conveniently be written S(0; E) in what follows. Noting
that then S(0; R)+.-- -FS(0; R) 2f(0) for every 0eK as is easily
seen, we deduce at once, with the help of Lemma 4, that

This implies the inequality of the assertion, since 2() is the supre-
mum of the leftmost sum in the above relation for all choices of
the sequence z0,- , z/.

PROOF OF THE THEOREM. On account of Lemma 6 we may assume
() finite. For any interval IIo endless on the right [or on the
left] (see [1]72), the restriction of the curve to I must be CR

on I [or CL on I] in virtue of [1]80. It thus follows easily, in
view of 1]32, that we need only consider the case where the in-
terval I0 is endless and where therefore is CRL on Io. We then
have X2()=A(R) by the theorem of 1]96. Consequently our theo-
rem will be established if we show A(R)--A, where and subsequently
A denotes for brevity the integral of f(0) over K.

Now we find by 183 that the curve R is right-hand continu-
ous and that R(x--)--L(x) everywhere in I0. Hence the equality
(pR()__L() is equivalent for each I0 to continuity of pR at z. It
follows from the proof of [1]78 that, at each point u of continuity
of , the curve p has a tangent direction (u) equal to ’(u)-(u),
so that (u) is a unique derive direction of at u. If, therefore,

" is a continuous curve in particular, the relation A(’)--A is a
direct consequence of Lemma 1.

Let us pass on to the case in which the set N of the points of
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discontinuity for p" is nonvoid. Since N is countable on account of
rectifiability of p, there exists by [1] 94 a continuous non-decreasing
function W(t), defined on an endless interval Jo and mapping J0 onto
I0, and such that the inverse image W-(x) of a point x of Io is a
non-degenerate set, and hence a closed interval, when and only when
xeN. Such an interval will as usual be called interval of constancy
(of the function W). We proceed to construct a continuous mapping
(t) of J0 into the semicircle pK] as follows. Writing t*--W(t)
for short for any point t of Io, we distinguish two cases according
as t*eN or not. In the latter case we put simply @(t)---’(t*). In
the former case, on the other hand, write [a, bJ for the interval of
constancy that contains the point t, and let 8 and 8. denote the in-
verse images, under the mapping p, of the distinct points (t*)and
R(t*) respectively. Let us then set (t)’--P(8-(2--?)2), where
is determined by the equation t--a-(b--a)L

Thus defined on Jo the spheric curve @ is easily seen to be con-
tinuous. Further, @ is biunique on each interval J of constancy of
W and fulfils A(@; J)--L(t*)oR(t*) for any point t of J. In view of
the last relation we find without difficulty that A(R)-A(). Our task
thus reduces itself to proving A()--A. Now let g(8) denote for
the number of the points of J0 at which assumes the value p(8).
Then A() equals the integral of g(8) over K in virtue of Lemma 1.
The proof will therefore be complete if we verify that g(8)--f(8)
identically. But this is an easy consequence of Lemma 2 by what
we have stated in the above about the curve @.
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