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On the Unitary Equivalence in Genral
Euclid Space.

By K6saku YOSIDA.

Mathematical Institute, Nagoya Imperial University.

(Comm. by T. TAKAGI, M. I. A., Sept. 12, 1946.)

I. Introduction and the theorem. The problem of the unitary equivalence

of two bounded selfadjoint (s. a.) operators in Hilbert space was solved by
E. HellingerC1) and H. Hahn ;2) the result was extended by M. H. StoneC3) to

the ease of not necessarily bounded s. a. operators. Later, K. Friedriehs4)

and H. NakanoCS) obtained respectively new forms of the condition for the
unitary equivalence; and thdr results were respectively extended by F.
Wecken6) and H. Nakano) to the ease of general euclid space R (the space

in which all the axioms of the I-filbert space are satisfied except the axiom
of separability). The purpose of the present note is to give a condition of
the unitary equivalence in form omewhat more simple and more algebrai-
eal than those o the above cited authors. It is easy to seeCS), that we may
reduce the problem to the case of bounded s. a. operators Ta and T. For
any bonnded, s. a. operator T let (T)’ be he totality of the bounded linear
operators commutative with T, and let (T)" be the totality of the bounded

linear operators commutative with every operator (T)’. Then T)’ and

(T)" are operator rings wh complex multipliers) and satisfy the condition

(1) if S (T)’ ((T)") the conjugate operator S* also (T)’ T)").
Moreover the ring (T)" is commutative. In terms of the operator-ring theory

our result reads as follows.

Theorem. For the unitary equivalence of Tx and T it is necessary and

suffiaent that the ring (Ta)’ is isomorphic (with complex multipliers)to the

ring (T.)’ by a correspondence C which maps T onto T. md which maps

conjugate operators onto conjugate operators.

(I) Dissertation, G6ttingen’ 1907.
(2) Monatsheft. Math. u. Phys. 23 (1912), 169-224.
(3) Linear transformations in Hilbert space, New York 1932.
(4) Jahresber. d D. Math. Vet. 45 (1935) If, 79-82.
(5) Ann. of Math. 42 (191), 657-664.
(6) Math. Ann. 116 (1939), 422-455.
(7) Math. Ann. 118 (1941), 112-133.
(8) Consider Tan- T.t and Tan-t Ts ff T and Ts are unbounded.
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2. Proof o.t the theorem. The necessity is evident. We will prove the
sufficiency. The isomorphism C maps s. a. operators onto s. a. operators and
positive definite operators onto positive definite operators. The latter fact
may be proved by taking the square root of the positive definite operator.

We will wri e A B if the operator (A-B) is positive definite. Let {T, be
a sequence of s. a. operators (T1)" such that Tll T12

_
:Tn... a s.

a. operators (T1)", and let Tn ,--,T.n by the isomorphism C, chen we
have
(2) strong limit TI strong limit Tn by C

This results from the fact that the strong_,= limit T1, ,su>= TI in (T)" (in

the sense of the mi-order :), and hence the strong limit T sup Ts in
n- nl

T)". Thus we have the

Lemma. Let TI 2dE (2) and T 2dE(2) be the spectral resolu-

tion of Ti and T, then i G2 denotes the Characteristic function of a Borei
measurable set 9i on (-o, oo
(3 G(T]---/(2)dEI(2)*--G(T) f(t)d(2) by C.

It is easy to see, by the isomorphism C, that the dimensions of the closed
linear manifolds N (T1) (x; T 0), N (T) (y; T y 0) are the same.
We put, for any x-R)N (T)

F () denote complex-valued Borel me,mutable funcfions
As i well-known, MT (x) i a epable loed linear manifold determined
by th set of element E ()x,- o o; it reduce both E () and T
viz. the projection P (MT (X) upon the manifold MT (x) is commutative wth

E () and with T. Let P (T.)’ be the operator which corresponds to P
P (MT1 (X)) b th isomorphism C, then P is also a projection and PR R
N (T). As MT (x’) is orthoonal to MT1 (x) if x’ i in RN(T) and ortho
onl to MT (x), ou theorem will be proed if we show tha’ there exists

an isometric mappin V from PR onto PR such that
(4) PTP VPTPV.

Firs we will show that the closed linear mmifold M PR is separable.
--Proof. Lett (y) be a complete orthonormal system in PR, and we classi-

(9) The existence of the strong limit T1, may be proved following F. Riesz’s idea,

See the footnote in K. Yosida and T. Nakayama Proc. Imp. Acad Tokyo, 18 (I942), 555-
560.

(10) Acta Sci. Math. Szeged, 7 (1935), 147-159.
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fy the set {MT2(Y )} as follows; MTs(Y) and MTs(Y )belong to the same
clam if and only if there exists a finite number of elements y y, Y .
Y, Ya such that MT2 (Y +i) is not orthogonal to MT2 (Y). Let the set

of these classes k be I(, then the closed linear manifold M(k)spanned by MT2
(y) k is a separable closed linear manifold PsR vhich reduces Ts and

P. Clearly PR M); here the cardinal numbs" o K must be at most
kK

This results rom te lact that since MT(X) is separable there exists at

most countable number of mutually orthogona! projections P (I) e (T)’ which

satisfy P(1)P Pi P(1)and hence, because o the isomorphism C, there

exists at most untble number o mutually orthogonal projections P (2)
(T2)’ which satisfy P (2) P2 PP (2) P (2).

As P2R is sepable, there exi.ts an element y PR such t?t, or any
z PR, the monotone icreasing unction (2)= E2(2)z is ablutely con-
tinuous with respect to the monotone increasing unction ()= E2(y 2.
We will show that MT (y)=PR-Proof. If otherwise, the projection P (MT
(y)) satisfies

(5) P2P (MT (Y)) P (MT (Y)) P P (MT2 (Y)) P.
Let Q be the projection e (T)’ which cow.ponds to P (MTs (y)) hy the iso-

morphism then we have

(6) 0 Q QP PQ P.
Since QR is separable, there exists x()aQR such that, for y z() QR, )()

E (2) z(1) 2 is absolutely continuous wi respect to () (2)= E (2) x(1) .
Then there exists Borel measurable set such that

For, if otherwise, p (2) E1 (2)x is absolutely continuous rpect to
g() (2). And since g()(2) is absolutely continuous with respect to p (2) by Q

=P Q=QP, we would have MT (x) MT (x()) viz. Q=P, contry to (6.
Let G (2) be the characteristic function of then we have from (7)

G (T) x 0, G (T) x() 0.

Henc we have O (T)P 0 and, for any z()e QR, G (T)z()= 0 or G (T)Q

0, cause e( () is of the form () d ( () and thus 6 (T)(

F (2) d E () x( 0. Therefore, by (a), G (T) P 0 and G () P(M
(y)) 0. This conadicts to the choice of y. Hence we must have M (y)

By a NI ment we may proe that the two monotone in,easing
functions () E ()x d ()= E()y are mutually absolutNy
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continuous with respect to each other. Hence, by Radon-Nikodym’s theorem,
there exists a Borel measurable non-negative function F (2‘) such that

f" fp1 (2,) 1 (2) dp2 (2), p2(2‘) F (2‘)- dp1 (2‘).

we put y (x) .;/F dE2 (2‘) y, wehence, if have

MT (y (x)) MT2 (Y) P.=R, o (2‘) E1 (2) x E2 (2‘) y (x) .
Thus it is easy to see that the isometric operator V demanded in (4)is given
by

VF (T) x 1 (T) y (x).
Remork. Our heorem may easily be extended to the ce where T1 and

T are normal operators.
In concluding this note I expre my hearty thaak to Dr. Kiyosi It6 for

the discussion of the result.


