26. Fundamental Theory of Toothed Gearing (IV).

By Kaneo Yamada.
Department of Applied Dynamics, Tôhoku University, Sendai. (Comm. by T. Kubota, M. J. A., May 12, 1949.)

We have developed the general theory of profile curves in the preceding reports from (I) to (III). ${ }^{1)}$ Now we shall give its several applications to practical curves.
§ 1. Profile curves of cycloidal system.
Take a circle with radius a_{γ} as a rolling curve K_{γ}. However, in this case, as a pitch curve K we may not necessarily take a circle. Suppose that K_{γ} (and accordingly K) is oriented as a_{γ} is positive, that is, the direction of K_{γ} is positive, if the center O of the circle K_{γ} always exists on the left side to the direction. From the two points at which the straight line connecting the center O_{y} of K_{γ} with a drawing point C invariably connected with K_{γ} intersects the perimeter of K_{γ} we choose the nearer one to C, denoting it by P_{0} and adopt P_{0} as origin. And denote by s the length of arc measured from the origin to an arbitrary point P on K_{γ}. Denote by r the signed length of the segment $P C$ and by θ the angle between the straight line $P C$ and the tangent to K_{γ} at P, where $\operatorname{sgn}(\theta)$ $=\operatorname{sgn}(r)$.

If we find the relation $r=f(s)$ between r and s and the relation $r=g(\theta$, between r and θ, they are respectively the equations of the profile curve F drawn by the drawing point C and of the path of contact Γ corresponding to F.

Now from the triangle $O_{\gamma} P C$ we have

$$
\mathrm{PC}^{2}=\mathrm{O}_{\gamma} \mathrm{C}^{2}+\mathrm{O}_{\gamma} \mathrm{P}^{2}-2 \mathrm{O}_{\gamma} \mathrm{C} \cdot \mathrm{O}_{\gamma} \mathrm{P} \cos \mathrm{C} \hat{\mathrm{O}}_{\gamma} \mathrm{P}
$$

and then denoting by e the length of the spgment $P_{0} C$

$$
r^{2}=e^{2}+4 a_{\gamma}\left(a_{\gamma}-e\right) \sin ^{2} \frac{s}{2 \overline{a_{\gamma}}}
$$

Hence, when $e>0$

$$
\begin{equation*}
r=f(s)=\sqrt{e^{2}+4 a_{\gamma}\left(a_{\gamma}-e\right) \sin ^{2} \frac{s}{2 a_{\gamma}} .} \tag{1}
\end{equation*}
$$

and when $e<0$
(1) $2 \quad r=f(s)=\left\{\begin{array}{l}\sqrt{e^{2}+4 a_{\gamma}\left(a_{\gamma}-e\right) \sin ^{2}-\frac{s}{2 a_{\gamma}}}, \text { where }|s| \leqq a_{\gamma} \cos ^{-1}\left(\frac{a_{\gamma}}{a_{\gamma}-e}\right) \\ \sqrt{e^{2}+4 a_{\gamma}\left(a_{\gamma}-e\right) \sin ^{2}-\frac{s}{2 a_{\gamma}}}, \text { where } \left\lvert\, s \geqq a_{\gamma} \cos ^{-1}\left(\frac{a_{\gamma}}{a_{\gamma}-e}\right)\right.\end{array}\right.$

In particular, when $e=0$, that is, the drawing point C exists on the perimeter of K_{γ},

1) This Proceedings, Vol. 25 (1949). No. 2.
(1) ${ }_{3}$

$$
r=f(s)=2 a_{\gamma} \sin \frac{|s|}{2 a_{\gamma}} .
$$

Next, from the same triangle $O_{\gamma} P C$ we have

$$
P C^{2}=O_{\gamma} C^{2}-O_{\gamma} P^{2}+2 P C \cdot O_{\gamma} P \cos O_{\gamma} \hat{P} C
$$

that is,

$$
\begin{equation*}
r^{2}-2 a_{\gamma} \sin \theta \cdot r+e\left(2 a_{\gamma}-e\right)=0, \tag{2}
\end{equation*}
$$

The curve denoted by (2), namely, the path of constact Γ is a circular arc with the point O_{γ} as its center and $a_{\gamma}-e$ as its radius. This is the fact that we can again immediately derive from the characteristic property of path of contact which we have explained in the report (II) §4, for the evolute of the circle K_{γ} is reduced to its center O_{γ}. From (2) we have
when $e>0$
(2) 1

$$
r=g(\theta)=a_{\gamma} \sin \theta \pm \sqrt{a_{\gamma}^{2} \sin ^{2} \theta-e\left(2 a_{\gamma}-e\right)},
$$

and when $e>0$

$$
r=g(\theta)=\left\{\begin{array}{l}
\left.a_{\gamma} \sin \theta+\sqrt{a_{\gamma}^{2} \sin ^{2} \theta-e\left(2 a_{\gamma}-e\right.}\right), \text { where } \theta \geqq 0, \tag{2}\\
-a_{\gamma} \sin \theta-\sqrt{a_{\gamma} \sin ^{2} \theta-e\left(2 a_{r}-e\right)}, \text { where } \theta \leqq 0 .
\end{array}\right.
$$

In particular, when $e=0$, that is, the drawing point C exists on the perimeter of K_{r},
(2) $)_{3} \quad r=g(\theta)=2 a_{r} \sin \theta$, where $\theta \geqq 0$.
(2) $)_{3}$ is the equation of the rolling curve K_{r} itself.

Next, let the natural equations of the pitch curves K_{1} and K_{2} be $a_{1}=a_{1}(s), a_{2}=a_{2}(s)$ respectively, then by Equation (13) in the report (III) we have the specific slidings σ_{1} and σ_{2} of the profile curves F and F as follows :

$$
\begin{equation*}
\sigma_{1}=\sigma_{1}(s)=\frac{\frac{1}{\overline{a_{1}(s)}}-\frac{1}{a_{2}(s)}}{\frac{1}{a_{r}}-\frac{1}{a_{2}(\bar{s})}}, \sigma_{2}=\sigma_{2}(s)=\frac{\frac{1}{a_{2}(s)}-\frac{1}{a_{1}(s)}}{\frac{1}{a_{r}}-\frac{1}{a_{2}(\bar{s})}} . \tag{3}
\end{equation*}
$$

The values of σ_{1} and σ_{2} are independent of the position of the given drawing point C.

From (3) it follows :
When the rolling curve K_{r} is a circle and moreover both of the pitch curves K_{1} and K_{2} are circles, then both of the specific slidings σ_{1} and σ_{2} become constant. Conversely, suppose that both of the pitch curves K_{1} and K_{2} are circles. If the profile curves F_{1} and F_{2} have constant specific slidings σ_{1} and σ_{2}, then the rolling curve K_{r} corresponding to F_{1} and F_{2} is necessarily a circle. ${ }^{2)}$
§ 2. Circular and straight profile curves.
Take a circle with radius a as a pitch curve K and settle a

[^0]circular $\operatorname{arc} F$ with a point M as its center and m as its radius at K as a profile curve. When the point M exists at the inside of the circle K, we can adopt an arbitrary arc of the circle F as a profile curve. When M exists at the outside of K, we can adopt a part of the arc between the two tangents drawn M to K as a profile curve. When M exists on the perimeter of K, we can not adopt any arc of F as a profile curve (making one-point contact).

Let the circle K be oriented as the radius a is positive, and take the nearer point P_{0} to M as origin from the two points at which the straight line connecting the center O of K with the center M of F intersects the perimeter of K. Denote by e the length of the segment $P_{0} M$.

Now we may conclude that the $\operatorname{arc} F$ is the parallel profile curve with the distance m to the point M. In this case, the direction of F is necessarily determined and accordingly the sign of m. Hence, from Equation (1), we have immediately the equation of F by Equation (3) in the report (II) as follows :
When $e>0$

$$
\begin{equation*}
r=f(s)= \pm m+\sqrt{e^{2}+4 a(a-e) \sin ^{2} \frac{s}{2 a}}, \tag{4}
\end{equation*}
$$

and when $e>0$
(4) 2

$$
r=f(s)=\left\{\begin{array}{l}
-m-\sqrt{ } e^{2}+4 a(a-e) \sin \frac{s}{2 a}, \text { where }|s| \leqq a \cos ^{-1}\left(\frac{a}{a-e}\right), \\
-m+\sqrt{ } e^{2}+4 a(a-e) \sin \frac{s}{2 a}, \text { where }|s| \geqq a \cos ^{-1}\left(\frac{a}{a-e}\right) .
\end{array}\right.
$$

The path of contact Γ of F is the conchoid curve, having the distance m, of the circular arc with the point O as the center and $a-e$ as the radius. And the equation of Γ is derived from (2) by Equation (11) in the report (II) :
When $e=0$
(5),

$$
r=g(\theta)= \pm m+a \sin \theta \pm \sqrt{a^{2} \sin ^{2} \theta-e(2 a-e), ~}
$$

and when $e>0$
(5) $)_{2} \quad r=g(\theta)=\left\{\begin{array}{l}-m+a \sin \theta+\sqrt{a^{2} \sin ^{2} \theta-e}(\overline{2 a-e),} \text { where } \theta \geqq 0, \\ -m-a \sin \theta-\sqrt{a^{2} \sin ^{2} \bar{\theta}-e(2 a-e),} \text { where } \theta \leqq 0 .\end{array}\right.$

Now, if $|e|$ is sufficiently large, then trasforming the first equation of (4) $)_{2}$, we have

$$
\begin{aligned}
r=f(s) & =-m+e \sqrt{1+4-a(a-e)} \operatorname{en}^{2} \sin ^{2} \frac{s}{2 a} \\
& =-m+e-a\left(1-\cos \frac{s}{a}\right)+\frac{1}{e}\left[2 a^{2} \sin ^{2} \frac{s}{2 a}-2^{a^{2}(a-e)^{2}} \bar{e}^{3} \sin ^{4} \frac{s}{2 a}+\cdots\right],
\end{aligned}
$$

that is,

$$
\begin{equation*}
r=f(s)=-b+a \cos \frac{s}{a}+\frac{1}{e}\left[2 a^{2} \sin ^{2} \frac{s}{2 a}-+\cdots \cdots \cdots\right], \tag{6}
\end{equation*}
$$

where $b=m-e+a$ denotes the distance from the point O to the circle F. In (6), if $m \rightarrow-\infty$ and accordingly $e \rightarrow-\infty$ then the arc F becomes a part of the straight line with the distance b from O and its equation is given by

$$
\begin{equation*}
r=f(s)=a \cos \frac{s}{a}-b \tag{7}
\end{equation*}
$$

The path of contact Γ of this straight profile curve F is derived by making $m \rightarrow-\infty$ in (5), or from (7) using the relation $\frac{s}{a}=\operatorname{sgn}(\theta) \frac{\pi}{2}-\theta$:
(8)

$$
r=g(\theta)=a|\sin \theta|-b
$$

If we take one of the points of intersection of F and K as origin, from (7) we have the following equation (9) by substituting $s+a$ $a \cos ^{-1} \frac{b}{a}$ or $s-a \cos ^{-1} \frac{b}{a}$ into (7) in place of s :

$$
\begin{equation*}
r=f(s)=a \cos \left(\frac{s}{a} \pm \cos ^{-1} \frac{b}{a}\right)-b \tag{9}
\end{equation*}
$$

or
(10)

$$
r=f(s)=a \sin \frac{s}{a} \sin \theta_{0}-b\left(1-\cos \frac{s}{a}\right)
$$

where θ_{0} denotes the angle between F and K. If, at this time, a $\rightarrow \infty$, then we have

$$
\begin{equation*}
r=f(s)=s \sin \theta_{0} \tag{11}
\end{equation*}
$$

§ 3 Involute profile curves.
There exist two involutes drawn out from an arbitrary point I on a circle. When we regard these two involutes together as a curve, the point I is a cusp of this curve. If needed, we shall call the two involutes the branch cuves of this composed curve. Equation (11) in § 2 is the equation of the straight line F which intersects a straight line K at the angle of intersection θ_{0}, when we take K as a pitch curve and F as a profile curve. If we take a circle O_{1} with radius a_{1} as a pitch curve corresponding to K, then the profile curve corresponding to the straight line F is a (composed) involute F_{1} of the circle which has the radius $\left|a_{1} \sin \theta_{0}\right|$ and concentric with the pitch circle O_{1}. In this case, we shall give the notice that, depending on the length of the straight profile curve F, we should take a part of one of the two branches of F_{1} as the profile curve corresponding to F or a part of F_{1} extending the two branches. If we take another circle O_{2} with radius a_{2} as a pitch curve, then the profile curve F_{2} corresponding to F is a (composed) involute of the circle which has the radius $\left|a_{2} \sin \theta_{0}\right|$ and concentric
with O_{2}. By the generalized Camus' theorem in the report (I), the two (composed) involutes F_{1} and F_{2} become a pair of profile curves, when we take the circles O_{1} and O_{2} as a pair of pitch curves. And the path of contact T is, in this case, the straight line perpendicular to the straight line F :

$$
\begin{equation*}
r=g(\theta): \quad \theta=\theta_{0}+\operatorname{sgn}\left(\theta_{0}\right) \operatorname{sgn}(s) \frac{\pi}{2} . \tag{12}
\end{equation*}
$$

Next, the equation of the rolling curve K_{γ} is given by the above equation (11) and Equation (8) in the report (II) or by the above equation (12) and Equation (5) in the report (II) as follows :

$$
\begin{equation*}
a_{r}=a_{r}(s)=\frac{r}{\cos \theta_{0}}=s \tan \theta_{0} \tag{13}
\end{equation*}
$$

In accordance with Equation '4) in the report (III), the velocity of sliding of the point of contact C of F_{1} and F_{2} is given by

$$
\begin{equation*}
v_{p}= \pm\left(\frac{1}{a_{1}}-\frac{1}{a_{2}}\right) \sin \theta_{0} \frac{d s}{d t} s \tag{14}
\end{equation*}
$$

In particular, when the pitch circles O_{1} and O_{2} rotate with constant angular velocities, the accelerations of sliding of the profile curves have the components by Equation (6) in the report (II) :

$$
\begin{equation*}
w_{t}= \pm\left(\frac{1}{a_{1}}-\frac{1}{a_{2}}\right)\left(\frac{d s}{d t}\right)^{2} \sin \theta_{0} \tag{15}
\end{equation*}
$$

and
(16)

$$
w_{n 1}=\left(\frac{1}{a_{1}}-\frac{1}{a_{2}}\right)^{2}\left(\frac{d s}{d t}\right)^{2} \frac{r^{2}}{a_{2} \cos \theta_{0}-r}
$$

or
$(16)_{2}$

$$
w_{n 2}=\left(\frac{1}{a_{2}}-\frac{1}{a_{1}}\right)^{2}\left(\frac{d s}{d t}\right)^{2} \frac{r^{2}}{a_{1} \cos \theta_{0}-r} .
$$

From (15) it follows that the profile curves slide one along the other with constant tangential acceleration.

Furthermore, by Equation (14) in the report (III), the specific slidings of F_{1} and F_{2} are respectively given by

$$
\begin{equation*}
\sigma_{1}=\frac{\frac{1}{a_{1}}-\frac{1}{a_{2}}}{\frac{\cos \theta_{0}}{r}-\frac{1}{a_{1}}}, \quad \sigma_{2}=\frac{\frac{1}{a_{2}}-\frac{1}{\alpha_{1}}}{\frac{\cos \theta_{0}}{r}-\frac{1}{a_{2}}} . \tag{17}
\end{equation*}
$$

Now denote by C_{2} the point which is on F_{2} and corresponds to the cusp I_{1} of F_{1}, the starting point on the base circle of the two branch curves of F_{1} and by C_{1} the point which is on F_{1} and corresponds to the cusp I_{2} of F_{2}. When the point of contact C of F_{1} and F_{2} runs on F_{1} from the point I_{1} to the point C_{1}, the point
C runs on the branch curve of F_{2} on which the point C_{2} exists from C_{2} to the point I_{2}. Furthermore, if C continues to run on F_{1}, then on $F_{2} C$ runs on another branch curve of F_{2} starting from I_{2}.

In conclusion I express hearty thanks to Prof. T. Kubota, who has given me kind guidance for the researches, and in addition I am obliged to him for his trouble at the publication of this paper.

[^0]: 2) T. Kubota : Geometry of Gears (Japanese), (1947), p. 112.
