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In the prescott and the nex notes we shall develop a general
theory conceraing the simple exteasion of a space wih respect to
a uaiformity. As special cases we obtain various topological ex-
tension of spaces such as completions of uniform spaces in the
sense of A. Weil’) (or more generally in the sense of L. W. Cohen-))
and the bicompact extensions of T-spaces due to N. A. Shanin) (a
generalization of Wallma’s bicompactification).

1. Definitions. In the present note we say that R is a
space, if R is an aggregate of "points" and to each subset A of
R there corresponds a set , called the closure of A, with the
following properties"

) A2, 2) A=A,
3) AB implies, 4) =0.

Thus R is a neighbourhood space such that we can take as a
basis of neighbourhoods of a point p a family of open sets con-
taining p. As is well known a space which satisfies the additivity
of the closure operation A+B +/ is a T-space.

Let R be a space. A collection {1I ;ae $2} of open coverings
of R is called a un’.formity. Two uniformities {} .and {, are
called-equivalent, if for any lIe{lI} there exists a covering

e {,} wh.ich is a refinement of 1I, and conversely for any ,
there exists 1I {t} such that 1. is a refinement of . We say
thut a uniformity {l ;ae f2} agrees with the topology, if it satisfies
the condition"

(A) {S (p, 1) a y2} is a basis of neighbourhoods at each point
pofR.

1) A. Weil" Sur les espaces a structure uniforme et sur la topologie gdndrale,
Actualites Sci. Ind. 551, 1937; J. W. Tukey Convergence and uniformity in top-

ology, 1940.
2) L.W. Cohen" On imbedding a space in a complete space, Duke Math. J.

5 (1939), 174-183.
3) N.A. Shanin" On special extensions of topological spaces, Doklady URSS,

38 (1943), 3-6; On separation in topological spaces, ibid., 110-113; On the theory

of bicampact extensions of topological spaces, ibid., 154-156. These papers are not

yet accessible to us. We knew the results by Mathematical Reviews.
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Here we deote by S(A, 1I) the sum of all the sets of a cover-
ing 1I intersecting a subset A of R). A uniformity (1I ;e e 2} is
called a T-uniformity, if it satisfies the condition"

(B) For any ,/ e 2 there exists -/e Y2 such that 1I is a re-
finement of 1I and

According as {11 ;a e/2} satisfies the condition"
(C) For any ee there exists (a)e/2 such that for each set

Uel:l,,) we can determine a set U of 1 and
so that S(U, t) U,,

or the condition"
(D) For any a e/2 there exists (a) Y2 such that, for eery set

U of 1I,(, S(U, 1I,,)) is contained in some set U of
the uniformity {its} is called regular or complet.ely regular. The
condition (D) states that l has a star-refinement ttx). A com-
pletely regular uniformity is always rega|ar. A space possessing
a uniformity which agrees with the topology is a un’.form space.

Remark. A uniform space in the sense of A. Well aud J. W.
Tukey) is a T-space which has a completeiy regular T-uniformity
agreeing with the topology. L.W. Cohen considered a T-space R
such that or any point p and any element a of a set 2 of indices
there is defined an open neighbourhood V(p) of p with the follow-
ing properties" 1) {V(p);ae 2} is a basis of neighbourhoods at
p, and 2) for pR and for a there exist (a) e/2 and
such that V,,) (q). V,)(p) = 0 implies V(.) (q) V(p) for every
point q of R.) If we put ---{V(p);peR} and construct all
the finite intersections of the coverings (a e 2), it is easily seen
that the set of these coverings defines a regular T-uniformity
agreeing with the topology.

2. Uniformisable spaces. A space R is called weakly qegular:),
if .for every open set U containing any" point p of R we have _. U.
R is called regular, if for any neighbourhood U of p there exists an
open set H such that p H, H U. In case for any neighbour-
hood U of p there exists a real-valued bounded continuous function
f(x) such that f(p) 0 and f(x) 1 for x e R--U, R is called com-
pletely regular.

Theorem 1. in order that a space R possess a unifovmity or
a regular uniformity or a completely regular uniformity or a T-uni-

4) J.w. Tukey: loe. cit.
5) Cf. A. Well and J. W. Tukey: loc. cit., 1).
6) L.W. Cohen: loc. cit., 2).
7) N.A.. Shanin: loc. eit., 3). Farther a space satisfying the condition (D)

of T. Inagaki is nothing but a weakly regular space as is shown by our Theorem
1 and his theorem in his pper" Sar les espacs structure uniforme, Joker. Hok-
kaido Univ. Ser. 1, Vol. X (1943), p. 2.0.



No. 2.] On the Simple Extension of a Space with Respect to a Uniformity. I. 67

formity, agreeing with the topology, it is necessary and sufficient that
R be a weakly regular space, a regular space, a completely ’egular
space ar a weakly regular T.space respectively.

Proof. For the case of complete regularity we can prove the
theorem smilarly as in the case of A. Well and J.W. Tukey".
Let R be a weakly regular space. Then the set {l; tg} of all
the open coverings of R is a uniformity agreeing with the topology,
snce for an open set G containing a point p we have S(p, 1I.) G,
where 1I----{G, R--}. Moreover, if R is regular, ths uniformity
s regular. Because for a covering 11 we can determine an open
covering [I, such that the closure of each set of 1I, is contained
in some set of 11, aud hence for any set U of 1I we have

some U, U 1I, and consequently,, if we put 11-- {U, R-- },
we have S(U, 11) U. If R is a T-space, then the above uniform-
ity is clearly a T-uniformity.

The necessity of the condition ollows readily rom Lemma
below, whose proof is easy.

Lemma 1. Let {lt ;a e .2} be a uniformity of a space R which
agrees w,th the topology. Then for any subset A of R we have. 11 S(A, its).

Remark. A To-space is not always weakly regular. A weakly
regular To-space is necessarily a T-space, as is shown by Theorem
1 and Lemma 1.

3. The simple extension R* of a space R with respect to a

uniformity. Let {1I; a 12} be a uniformity of a space R. A
family {Xx e A} of subsets of R is called Cauchy family (with
respect to the uniformity t1I}), if it has the finite intersection
property and satisfies he condition"

(1) For any a I2 there exist a set Xx e {X} and B t? and a
set U of 1I such that

s (x, u)C u.
A Cauchy farriily {X} is said to be vanishing, if I]X O. A
Cauchy family {X,} is said to be equivalent to another Cauchy
family {Y}" written {X}{Y}, if or any Xz e{Xz} and any
a e/2 there exist a set Y e {Y} and Be 2 such that

(2) S (Y,
Lemma 2. If {X} { Y}, then { Y) {X}.
Proof. For any a s 12 there exist Xx e {X}, /9 e 2 and U e 1I

such that S (Xx, tt.) U. By the assumption of Lemma 2 there

8) Cf. loc. cit., 1), in particular Tukey’s book p. 58. It is to be noted that
we do not assume the additivity of the closure operation which is not implied by
the complete regularity.
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exist Y0 {} and 7 e $2 such that S (Y,0, llv) S (X,, 1I). Thea
we have Y.U==0 for any Ye{Y}, since Y.Yo=0, and
hence S (Xz, Lt) U S (], 1I). Thus we have {:}{X}.

Lemma 3. If {Xz}{Y} and {Y}.{Z}, then {Xx}{Z}.
Lemma 3 follows directly from the definition. Hence the equi-

valence of Cauchy families is an equivalence relation. It may
happen that a non-vanishing Cauchy family is equivalent to a
vanishing Cauchy family. In this connection we state the following

lemma, which is an easy consequence of Lemma 1.

Lemma 4. If {lI} agrees with the topology and {X}
then IIX IIY.

We consider the equivalence classes of vanishing Cauchy fam-
ilies; we denote the set of these classes by C. For any ope set
G of R we define the set G* as a subset of R+C as follows" a
point x e C belongs to G* if for aay Cauchy family {X} of the
class x there exist X {\} and a $2 such that S (X, 1I) G)
and a point x of R belongs to G* if xe G; that is,

(3) G*= G+{x; {X} e x implies that S(X)., [1) G for some
X e {X} and t}.

Then we have
O* O, R* R+C.Lemma ;. G*- R G,

Lemma 5. G H implies G* H*.
Lemma 7. GI G:. Gm 0 implies G1*Go*..., Gm* O.
Proof. If x eG, i=1,2, .,m, then we have x eC and for

any Cauchy family {Xz; A} of the class x there exist A and
GG-a e 2 such that S(X, [1) G, i 1, 2, m, and hence

G .XX...X= O, which contradicts the hypothesis of the
lemma.

Now we take the set of G* ior all open sets G of R as a basis.
o open sets of R*. Then R* is clearly a space (in the sense of

1) and R is a subspace of R*.
Lemma 8. 1I* { U*; U e 12} is an open covering of R*.

Proof. Let x e C. For any a e 2 and aay Cauchy amily {\}
of the class x there exist X e {X}, / e 52 and U e 12 such that
S(Xz, [I) [J, which shows that x U,.*.

Lemma 9. If a point x of R*--R is contained in G*, then we
have S(x, 11*) G* for soe a 2.

Proof. For a Cauchy amily {X} of the class x there exist
Xz {Xz} and a $2 such tha S(A\, 11) G. Let x e U*, y e U*
for some set U of 1I. Then there exist X. e {X} and B e 2 such

9) It is proved by the definition of equivalence that the condition holds for
any {X} of the class x if it holds for some Z} of x.
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that S( o, 1I) U If yeR, rhea we have yUS(X
If yC and a Cauchy family {Y} belongs to the class y, then
%here exist Y e {Y} and 7 9 such that S(Y, ) U. Hence
we have S(Y,v)US(X,)G, that is, yeG*. There-
fore S (x, j*)’ G*.

Lemma 10. If x R*--R, then we have

x [llS(x, J)] (R*--R).

Proof. Let ye[HS(x,J)](R*--R). Then for any there
exists a set U of such that x, y UJ. By the argument in the
proof of Lemma 9 we see that fdr a Cauchy family {Y,} of the
class y there exist Y e {Y} and such that S(Y, ) S(X;, )
for any X {X}. This shows that {X}}.

Lemma 1 1. If a vanishing Cauchy family {X,} belongs to the
class x which is a poin of R*--R, then we have x IIX., where

the bar indicat.es the closure operation in the space R*.

Proof. For .any a e there exist 0 e {}, e .2 and
such that S(Xo,) U. Hence we have X. S(x, [lJ)0, sinc
A-U0, x UJ, and consequently x eI[ by Lemma 9. On

the other hand, from the relation S(Xo, ,)C U it follows that
S(X0, tl*) UJ. Hence we have "o b* < S(x, ttJ). There-
fore H IIS(x, [lJ). Since {X,} is vanishing, we have x

by Lemma 10.
Lemma I Z. If G is an open et of R, then S(G*, *) [S(G, H)]*.
This Lemma follows immediately from Lmmas 6 and 7. Sum-

marizing above results we obtain
Theorem Z. R* is a space which con$ain R as a sbspace.

.R is dense in R*, and every point of R*--R is closed.
Theorem 3. {*} is a uniformity of R*. {*} is a T-uni-

formity, a regular uniformity or a completely regular uniformity,
according a {} is a ILuniformity, a regular uniformity or a com-
pletely regular uniformity.

Theorem 4. If a uniformity {t} of R agrees with the topology,
then the uniformity {tlJ} of R* agrees with the topology.

Proof. Lt x e R. If S(x, [L) < G, we have S(x, [lJ) G*.
We call R* the simple extension of R with respect to the n/orm

Remark. If {U; Ue,ae} is a basis of open sets of R,
hen {-; U ll, a e 9} is a basis of open sets of R*.

4. Further properties of R*.
Lemma 13. If {S(x, ); ae 2} is a basis of neighbourhoods of

a point x of R, then we have
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(4) llS(x, 1I*) llS(x, u).

Proof. If y (R*--R) HS(x, t%*), then there exists, for any

a.2, a set U of 1I. such that xU and yU*. For a Cauchy
family {Y} of the class y there exist Yoe Y} and /!e such
that S(Yo, 11,) U. Hence we have x U S(Y, 1/) for every

Y e { Y}, and consequently we have S(x, ) Y == O, which shows.
that x e HF-R by the hypothesis of the lemma. This contradicts

the assumptio that {Y} is vanishing. Therefore HS(x, t*) R..
This proves (4).

Lemma 14. If {t} agrees with the topology, then
(5) HS(x, 1*) = x or . R,

according as x R*--R or x R.
Proof. Since HS(x, 1*) by Theorem 4 and Lemma 1, we

have (5) by Lemmas 11 and 13.
Theorem . If R is a T-space and {} is a T-uniformity of

R, then R* is a T-space. Furthermore, if R is a To-space, so is R*.
The first part of the theorem follows from the next Lemma

15. The second part is obvious.
Lemma 1. /f {1 ;ee } is a T-uniformity of a T-space R,

then we have (G1. G)* GI*. G* for any open sets G., G of R.
Proof. Let x G*. G:* and x e C. Then for a Cauchy family

{X} of the class x there exist Xe{X} and ae/2 such that
S(Xz, 1) G, i--1, 2. If we take a common refinement 1 of

1 and 1,..., then we have S(Xh. X.., ).GG.. Let S(A, .l) U
for some Xe{X,}, 7.2, Uell. Then we have S(X,

S(XX).,,., .,) C GG.. This proves Lemma 15.
Theorem 5. If R is a T-space and {tl} is a T-uniformity

which a.Trees with the topology, theft R* is a T-spaze.
Theorem 6 i.s a direct consequence of Theorem 5 and Lemmas.

13, 14. The following theorem is also clear.
Theorem 7. If R is a (conpletely) regular apace and { is

a (completely) regular uniformity which agrees with the topology, then
R* is a (completely) regu ar space..

5. Completeness. The case of regular uniformity.1) A space
R with a uniformity {1} is said to be complete with respect to the
uniformity, if every Cauchy family {X with respect to {[} is
not vanishing, that is, H. :- 0.

Theorem 8. A space R is complete with respect to the uniform
yit {, ;a e $2} which is composed of al open coverings of R.

10) The general case will be treated in the third note.
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Proof. If a Cauchy family {X; A} is vanishing, then
{R--X,; A} is an open coveriag of R, and hence it is equal to
some 1. Since {X} is a Cauchy family there exist A and:
Ue l such that X U. On the other hand, U is expressed.
as R-- with some A. Hence we have X.X 0, contrary
to the finite intersection property.

Corollary. A regular (or fully normal) space R is complete with
respect to some regular (or completely regular) uniformity.

The extension R* is not always complete, as will be show
below. Here we shall prove

Theorem 9. If
space R which agrees with the topology, then R* is complete with
respect to the unrormity {1*

Well’s theorem and Cohen’s theorem are contained in our
Theorem 9.) We first prove some ]emmas.

Lemma 16. Let {1t; .} be a regular uniformity of a space
R. Then a family {X} of subsets of R with the finite intersection.
property is a Cauchyfamily yfor any there exist a set e {Xx}
and a set U, of such that X U.

Lemma 1 7. Let {X,} and {Y} be Cauchyfamilies with respect
to a regular uniformity {1t ;ae !2}. Then {X}{Y}, if for any

and any X.e {X.} there exists a set Y e { Y} such that Y,
s (x, u).
Since mma 16 is clear, we have only to prove Lemma 17.

For any ae there exist X0e{Xz}, Be- and Ute such
that S(X0, ,) ( Uzt. Let Y,,(S(Xz, 1t,). Then we have S(Y, lt)

S(Xz, ), where
Cororallv. {Xz} {Y} f and only if {Xz+ Y} is a Cauchy

family. Here {} is assumed to be a regular uniformity (or a. T-
uniformity).

Proof of Theorem 9. Let {M;eA} be a Cauchy family of
R* with respect to {tl*; a }. According to Lemmas 16 aad 17
{S(Mz, 1*); e A, a 9} is a Cauchy family which is equivalent t
{Mz}. By mma 7 {R.S(Mz, 11.*)} is a Cauchy family of R with.
respect to {U}. Hence we have H S(Mz, 11*).R0, and corn
sequently HMz 0 by Lemma 4. Thus R* is complete.

Example. In case {tt} is a completely regular uniformity
which ds not agree with the topology, R* is not neccessarily
complete even if R is a metrizable space. Let R be a subspace

11) This is proved for metric spaces by J. Dieudonne (Ann. L’ecole norm.
sup. 56 (1939), p. 280) and for fully normal spaces by T. Shirota (Shijo-Danwakai,
9 (1948), p. 283), and by the present author (ibid., 13 (1949), p. 458).

12) Cf. footnotes 1), 2) and the remark at the end of 1.
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of a two-dimensional Euclidean space such that R----{(x, y);
Oxl,Oyl}+{(x,O);Ox__l}+{(x, 1);O_:L.x__=l. Let
us denote by U.,,. the intersection of the set {(x, y) 0 :__ x

__
1,

J31 < y < ’i3! with R and put Then

it is easy to see that {1L} is a completely regular uniformity of R.

FranyrealnumberaCauchyfamily {( 1 ) },-- 7/-+, re=l,2,.-.

defines a point of R* which will be denoted by p*(a). Thea

R*---R+{p*(a);0al}, and p ;m--l,

vanishing Cauchy family with respect to
complete, (while R** is complete).


