16. On the Simple Extension of a Space with Respect to a Uniformity. I.

By Kiiti MORITA.

Tokyo University of Education. (Comm. by K. KUNUGI, M.J.A., Feb. 12, 1951.)

In the present and the next notes we shall develop a general theory concerning the simple extension of a space with respect to a uniformity. As special cases we obtain various topological extensions of spaces such as completions of uniform spaces in the sense of A. Weil¹ (or more generally in the sense of L. W. Cohen²) and the bicompact extensions of T-spaces due to N. A. Shanin³ (a generalization of Wallman's bicompactification).

§ 1. Definitions. In the present note we say that R is a *space*, if R is an aggregate of "points" and to each subset A of R there corresponds a set \overline{A} , called the closure of A, with the following properties:

1) $A \subset \overline{A}$, 3) $A \subset B$ implies $\overline{A} \subset \overline{B}$, 4) $\overline{0} = 0$.

Thus R is a neighbourhood space such that we can take as a basis of neighbourhoods of a point p a family of open sets containing p. As is well known a space which satisfies the additivity of the closure operation: $\overline{A+B} = \overline{A} + \overline{B}$ is a T-space.

Let *R* be a space. A collection $\{\mathfrak{U}_{\alpha}; \alpha \in \mathcal{Q}\}$ of open coverings of *R* is called a *uniformity*. Two uniformities $\{\mathfrak{U}_{\alpha}\}$ and $\{\mathfrak{B}_{\lambda}\}$ are called *equivalent*, if for any $\mathfrak{U}_{\alpha} \in \{\mathfrak{U}_{\alpha}\}$ there exists a covering $\mathfrak{B}_{\lambda} \in \{\mathfrak{B}_{\lambda}\}$ which is a refinement of \mathfrak{U}_{α} , and conversely for any \mathfrak{B}_{λ} there exists $\mathfrak{U}_{\beta} \in \{\mathfrak{U}_{\alpha}\}$ such that \mathfrak{U}_{β} is a refinement of \mathfrak{B}_{λ} . We say that a uniformity $\{\mathfrak{U}_{\alpha}; \alpha \in \mathcal{Q}\}$ agrees with the topology, if it satisfies the condition:

(A) $\{S(p, \mathfrak{U}_{\alpha}); \alpha \in \Omega\}$ is a basis of neighbourhoods at each point p of R.

¹⁾ A. Weil: Sur les espaces a structure uniforme et sur la topologie générale, Actualites Sci. Ind. 551, 1937; J. W. Tukey: Convergence and uniformity in topology, 1940.

²⁾ L. W. Cohen: On imbedding a space in a complete space, Duke Math. J. 5 (1939), 174-183.

³⁾ N. A. Shanin: On special extensions of topological spaces, Doklady URSS, **38** (1943), 3-6; On separation in topological spaces, ibid., 110-113; On the theory of bicompact extensions of topological spaces, ibid., 154-156. These papers are not yet accessible to us. We knew the results by Mathematical Reviews.

K. MORITA.

Here we denote by $S(A, \mathbb{I})$ the sum of all the sets of a covering \mathbb{I} intersecting a subset A of \mathbb{R}^4 . A uniformity $\{\mathbb{I}_{\alpha} : \alpha \in \mathcal{Q}\}$ is called a *T*-uniformity, if it satisfies the condition:

(B) For any $\alpha, \beta \in \Omega$ there exists $\gamma \in \Omega$ such that \mathfrak{U}_{τ} is a refinement of \mathfrak{U}_{α} and \mathfrak{U}_{β} .

According as $\{\mathfrak{U}_{\alpha}; \alpha \in \mathcal{Q}\}$ satisfies the condition:

(C) For any $\alpha \in \mathcal{Q}$ there exists $\lambda(\alpha) \in \mathcal{Q}$ such that for each set $U \in \mathfrak{U}_{\lambda(\alpha)}$ we can determine a set U_{α} of \mathfrak{U}_{α} and $\delta = \delta(\alpha, U) \in \mathcal{Q}$ so that $S(U, \mathfrak{U}_{\delta}) \subset U_{\alpha}$,

or the condition:

(D) For any $\alpha \in \Omega$ there exists $\lambda(\alpha) \in \Omega$ such that, for every set

U of $\mathfrak{U}_{\lambda(\alpha)}$, $S(U, \mathfrak{U}_{\lambda(\alpha)})$ is contained in some set U_{α} of \mathfrak{U}_{α} , the uniformity $\{\mathfrak{U}_{\alpha}\}$ is called *regular* or *completely regular*. The condition (D) states that \mathfrak{U}_{α} has a star-refinement $\mathfrak{U}_{\lambda(\alpha)}^{4}$. A completely regular uniformity is always regular. A space possessing a uniformity which agrees with the topology is a *uniform space*.

Remark. A uniform space in the sense of A. Weil and J. W. Tukey⁵) is a T_1 -space which has a completely regular *T*-uniformity agreeing with the topology. L. W. Cohen considered a T_1 -space Rsuch that for any point p and any element α of a set \mathcal{Q} of indices there is defined an open neighbourhood $V_{\alpha}(p)$ of p with the following properties: 1) $\{V_{\alpha}(p) ; \alpha \in \mathcal{Q}\}$ is a basis of neighbourhoods at p, and 2) for $p \in R$ and for α there exist $\lambda(\alpha) \in \mathcal{Q}$ and $\delta(p, \alpha) \in \mathcal{Q}$ such that $V_{\delta(p,\alpha)}(q) \cdot V_{\lambda(\alpha)}(p) \neq 0$ implies $V_{\delta(p,\alpha)}(q) \subset V_{\alpha}(p)$ for every point q of R.⁶ If we put $\mathfrak{B}_{\alpha} = \{V_{\alpha}(p) ; p \in R\}$ and construct all the finite intersections of the coverings $\mathfrak{B}_{\alpha}(\alpha \in \mathcal{Q})$, it is easily seen that the set of these coverings defines a regular *T*-uniformity agreeing with the topology.

§ 2. Uniformisable spaces. A space R is called weakly regularⁱ, if for every open set U containing any point p of R we have $\overline{p} \subset U$. R is called regular, if for any neighbourhood U of p there exists an open set H such that $p \in H$, $\overline{H} \subset U$. In case for any neighbourhood U of p there exists a real-valued bounded continuous function f(x) such that f(p) = 0 and f(x) = 1 for $x \in R-U$, R is called completely regular.

Theorem 1. In order that a space R possess a uniformity or a regular uniformity or a completely regular uniformity or a T-uni-

⁴⁾ J. W. Tukey: loc. cit.

⁵⁾ Cf. A. Weil and J. W. Tukey: loc. cit., 1).

⁶⁾ L. W. Cohen: loc. cit., 2).

⁷⁾ N. A. Shanin: loc. cit., 3). Further a space satisfying the condition (D) of T. Inagaki is nothing but a weakly regular space as is shown by our Theorem 1 and his theorem in his paper: Sur les espaces à structure uniforme, Jour. Hokkaido Univ. Ser. 1, Vol. X (1943), p. 230.

formity, agreeing with the topology, it is necessary and sufficient that R be a weakly regular space, a regular space, a completely regular space or a weakly regular T-space respectively.

Proof. For the case of complete regularity we can prove the theorem similarly as in the case of A. Weil and J. W. Tukey⁸⁾. Let R be a weakly regular space. Then the set $\{\mathfrak{ll}_{\alpha}; \alpha \in \mathcal{Q}\}$ of all the open coverings of K is a uniformity agreeing with the topology, since for an open set G containing a point p we have $S(p,\mathfrak{ll}_{\alpha}) \subset G$, where $\mathfrak{ll}_{\alpha} = \{G, R - \bar{p}\}$. Moreover, if R is regular, this uniformity is regular. Because for a covering \mathfrak{ll}_{α} we can determine an open covering $\mathfrak{ll}_{\lambda(\alpha)}$ such that the closure of each set of $\mathfrak{ll}_{\lambda(\alpha)}$ is contained in some set of \mathfrak{ll}_{α} , and hence for any set U of $\mathfrak{ll}_{\lambda(\alpha)}$ we have $\bar{U} \subset$ some $U_{\alpha}, U_{\alpha} \in \mathfrak{ll}_{\alpha}$, and consequently, if we put $\mathfrak{ll}_{\delta} = \{U_{\alpha}, R - \bar{U}\}$, we have $S(U, \mathfrak{ll}_{\delta}) \subset U_{\alpha}$. If R is a T-space, then the above uniformity is clearly a T-uniformity.

The necessity of the condition follows readily from Lemma 1 below, whose proof is easy.

Lemma 1. Let $\{\mathfrak{U}_{\alpha}; \alpha \in \Omega\}$ be a uniformity of a space R which agrees with the topology. Then for any subset A of R we have $\overline{A} = \prod_{\alpha \in \Omega} S(A, \mathfrak{U}_{\alpha}).$

Remark. A T_0 -space is not always weakly regular. A weakly regular T_0 -space is necessarily a T_1 -space, as is shown by Theorem 1 and Lemma 1.

§ 3. The simple extension \mathbb{R}^* of a space \mathbb{R} with respect to a uniformity. Let $\{\mathfrak{U}_{\alpha}; \alpha \in \Omega\}$ be a uniformity of a space \mathbb{R} . A family $\{X_{\lambda}; \lambda \in \Lambda\}$ of subsets of \mathbb{R} is called *Cauchy family* (with respect to the uniformity $\{\mathfrak{U}_{\alpha}\}$), if it has the finite intersection property and satisfies the condition:

For any α∈ Ω there exist a set X_λ ∈ {X_λ} and β∈ Ω and a set U_a of ll_a such that

$$S(X_{\lambda}, \mathfrak{U}_{\beta}) \subset U_{\alpha}.$$

A Cauchy family $\{X_{\lambda}\}$ is said to be vanishing, if $\prod_{\lambda \in A} \overline{X}_{\lambda} = 0$. A Cauchy family $\{X_{\lambda}\}$ is said to be equivalent to another Cauchy family $\{Y_{\mu}\}$: written $\{X_{\lambda}\} \sim \{Y_{\mu}\}$, if for any $X_{\lambda} \in \{X_{\lambda}\}$ and any $\alpha \in \mathcal{Q}$ there exist a set $Y_{\mu} \in \{Y_{\mu}\}$ and $\beta \in \mathcal{Q}$ such that

(2)

 $S\left(Y_{\mu}\,,\,\mathfrak{ll}_{\scriptscriptstyleeta}
ight)\subset S\left(X_{\lambda}\,,\,\mathfrak{ll}_{\scriptscriptstyleeta}
ight).$

Lemma 2. If $\{X_{\lambda}\} \sim \{Y_{\mu}\}$, then $\{Y_{\mu}\} \sim \{X_{\lambda}\}$.

Proof. For any $\alpha \in \mathcal{Q}$ there exist $X_{\lambda} \in \{X_{\lambda}\}$, $\beta \in \mathcal{Q}$ and $U_{\alpha} \in \mathfrak{U}_{\alpha}$ such that $S(X_{\lambda}, \mathfrak{U}_{\beta}) \subset U_{\alpha}$. By the assumption of Lemma 2 there

67

⁸⁾ Cf. loc. cit., 1), in particular Tukey's book p. 58. It is to be noted that we do not assume the additivity of the closure operation which is not implied by the complete regularity.

exist $Y_{\mu_0} \in \{Y_{\mu}\}$ and $\gamma \in \Omega$ such that $S(Y_{\mu_0}, \mathfrak{U}_{\tau}) \subset S(X_{\lambda}, \mathfrak{U}_{\theta})$. Then we have $Y_{\mu} \cdot U_{\alpha} \neq 0$ for any $Y_{\mu} \in \{Y_{\mu}\}$, since $Y_{\mu} \cdot Y_{\mu_0} \neq 0$, and hence $S(X_{\lambda}, \mathfrak{U}_{\theta}) \subset U_{\alpha} \subset S(Y_{\mu}, \mathfrak{U}_{\alpha})$. Thus we have $\{Y_{\mu}\} \sim \{X_{\lambda}\}$.

Lemma 3. If $\{X_{\lambda}\} \sim \{Y_{\mu}\}$ and $\{Y_{\mu}\} \sim \{Z_{\nu}\}$, then $\{X_{\lambda}\} \sim \{Z_{\nu}\}$.

Lemma 3 follows directly from the definition. Hence the equivalence of Cauchy families is an equivalence relation. It may happen that a non-vanishing Cauchy family is equivalent to a vanishing Cauchy family. In this connection we state the following lemma, which is an easy consequence of Lemma 1.

Lemma 4. If $\{\mathfrak{U}_{\alpha}\}$ agrees with the topology and $\{X_{\lambda}\}\sim\{Y_{\mu}\}$, then $\Pi \overline{X}_{\lambda} = \Pi \overline{Y}_{\mu}$.

We consider the equivalence classes of vanishing Cauchy families; we denote the set of these classes by C. For any open set G of R we define the set G^* as a subset of R+C as follows: a point $x \in C$ belongs to G^* if for any Cauchy family $\{X_{\lambda}\}$ of the class x there exist $X_{\lambda} \in \{X_{\lambda}\}$ and $\alpha \in \mathcal{Q}$ such that $S(X_{\lambda}, \mathfrak{U}_{\alpha}) \subset G^{\circ}$, and a point x of R belongs to G^* if $x \in G$; that is,

(3) G* = G + {x; {X_λ} ∈ x implies that S(X_λ, U_α) ⊂ G for some X_λ ∈ {X_λ} and U_α}.

Then we have

Lemma 5. $G^* \cdot R = G$, $0^* = 0$, $R^* = R + C$.

Lemma 6. $G \subset H$ implies $G^* \subset H^*$.

Lemma 7. $G_1 \cdot G_2 \cdots G_m = 0$ implies $G_1^* G_2^* \cdots G_m^* = 0$.

Proof. If $x \in G_i^*$, $i = 1, 2, \dots, m$, then we have $x \in C$ and for any Cauchy family $\{X_{\lambda}; \lambda \in \Lambda\}$ of the class x there exist $\lambda_i \in \Lambda$ and $\alpha_i \in \mathcal{Q}$ such that $S(X_{\lambda_i}, \mathfrak{ll}_{\alpha_i}) \subset G_i$, $i = 1, 2, \dots, m$, and hence $G_1G_2 \cdots$ $G_m \supset X_{\lambda_1}X_{\lambda_2} \cdots X_{\lambda_m} \neq 0$, which contradicts the hypothesis of the lemma.

Now we take the set of G^* for all open sets G of R as a basis of open sets of R^* . Then R^* is clearly a space (in the sense of § 1) and R is a subspace of R^* .

Lemma 8. $\mathfrak{U}_a^* = \{U^*; U \in \mathfrak{U}_a\}$ is an open covering of \mathbb{R}^* .

Proof. Let $x \in C$. For any $\alpha \in \Omega$ and any Cauchy family $\{X_{\lambda}\}$ of the class x there exist $X_{\lambda} \in \{X_{\lambda}\}$, $\beta \in \Omega$ and $U_{\alpha} \in \mathfrak{U}_{\alpha}$ such that $S(X_{\lambda}, \mathfrak{U}_{\beta}) \subset U_{\alpha}$, which shows that $x \in U_{\alpha}^{*}$.

Lemma 9. If a point x of $R^* - R$ is contained in G^* , then we have $S(x, \mathfrak{U}_a^*) \subset G^*$ for some $\alpha \in \Omega$.

Proof. For a Cauchy family $\{X_{\lambda}\}$ of the class x there exist $X_{\lambda} \in \{X_{\lambda}\}$ and $\alpha \in \mathcal{Q}$ such that $S(X_{\lambda}, \mathfrak{U}_{\alpha}) \subset G$. Let $x \in U_{\alpha}^{*}, y \in U_{\alpha}^{*}$ for some set U_{α} of \mathfrak{U}_{α} . Then there exist $X_{\lambda_{0}} \in \{X_{\lambda}\}$ and $\beta \in \mathcal{Q}$ such

⁹⁾ It is proved by the definition of equivalence that the condition holds for any $\{X_{\lambda}\}$ of the class x if it holds for some $\{Z_{\lambda}\}$ of x.

that $S(X_{\lambda_0}, \mathfrak{U}_{\beta}) \subset U_{\alpha}$. If $y \in R$, then we have $y \in U_{\alpha} \subset S(X_{\lambda}, \mathfrak{U}_{\alpha}) \subset G$. If $y \in C$ and a Cauchy family $\{Y_{\mu}\}$ belongs to the class y, then there exist $Y_{\mu} \in \{Y_{\mu}\}$ and $\gamma \in \Omega$ such that $S(Y_{\mu}, \mathfrak{U}_{\tau}) \subset U_{\alpha}$. Hence we have $S(Y_{\mu}, \mathfrak{U}_{\tau}) \subset U_{\alpha} \subset S(X_{\lambda}, \mathfrak{U}_{\alpha}) \subset G$, that is, $y \in G^*$. Therefore $S(x, \mathfrak{U}_{\sigma}^*) \subset G^*$.

Lemma 10. If $x \in R^* - R$, then we have $x = [\prod_{a} S(x, \mathfrak{U}_a^*)] (R^* - R).$

Proof. Let $y \in [\Pi S(x, \mathfrak{U}_a^*)](R^* - R)$. Then for any α there exists a set U_α of \mathfrak{U}_a such that $x, y \in U_a^*$. By the argument in the proof of Lemma 9 we see that for a Cauchy family $\{Y_\mu\}$ of the class y there exist $Y_\mu \in \{Y_\mu\}$ and $\gamma \in \mathcal{Q}$ such that $S(Y_\mu, \mathfrak{U}_\tau) \subset S(X_\lambda, \mathfrak{U}_\alpha)$ for any $X_\lambda \in \{X_\lambda\}$. This shows that $\{X_\lambda\} \sim \{Y_\mu\}$.

Lemma 11. If a vanishing Cauchy family $\{X_{\lambda}\}$ belongs to the class x which is a point of $R^* - R$, then we have $x = \prod_{\lambda} \overline{X}_{\lambda}$, where the bar indicates the closure operation in the space R^* .

Proof. For any $\alpha \in \mathcal{Q}$ there exist $X_{\lambda_0} \in \{X_{\lambda}\}, \beta \in \mathcal{Q}$ and $U_{\alpha} \in \mathfrak{U}$ such that $S(X_{\lambda_0}, \mathfrak{U}_{\beta}) \subset U_{\alpha}$. Hence we have $X_{\lambda} \cdot S(x, \mathfrak{U}_{\alpha}^*) \neq 0$, since $X_{\lambda} \cdot U_{\alpha} \neq 0$, $x \in U_{\alpha}^*$, and consequently $x \in \prod \overline{X}_{\lambda}$ by Lemma 9. On the other hand, from the relation $S(X_{\lambda_0}, \mathfrak{U}_{\beta}) \subset U_{\alpha}$ it follows that $S(X_{\lambda_0}, \mathfrak{U}_{\beta}^*) \subset U_{\alpha}^*$. Hence we have $\overline{X}_{\lambda_0} \subset U_{\alpha}^* \subset S(x, \mathfrak{U}_{\alpha}^*)$. Therefore $\prod \overline{X}_{\lambda} \subset \prod S(x, \mathfrak{U}_{\alpha}^*)$. Since $\{X_{\lambda}\}$ is vanishing, we have $x = \prod \overline{X}_{\lambda}$ by Lemma 10.

Lemma 12. If G is an open set of R, then $S(G^*, \mathfrak{U}_a^*) \subset [S(G, \mathfrak{U}_a)]^*$. This Lemma follows immediately from Lemmas 6 and 7. Summarizing above results we obtain

Theorem 2. R^* is a space which contains R as a subspace. R is dense in R^* , and every point of R^*-R is closed.

Theorem 3. $\{\mathfrak{U}_a^*\}$ is a uniformity of \mathbb{R}^* . $\{\mathfrak{U}_a^*\}$ is a T-uniformity, a regular uniformity or a completely regular uniformity, according as $\{\mathfrak{U}_a\}$ is a T-uniformity, a regular uniformity or a completely regular uniformity.

Theorem 4. If a uniformity $\{\mathfrak{U}_a\}$ of R agrees with the topology, then the uniformity $\{\mathfrak{U}_a^*\}$ of R^* agrees with the topology.

Proof. Let $x \in R$. If $S(x, \mathfrak{U}_a) \subset G$, we have $S(x, \mathfrak{U}_a^*) \subset G^*$.

We call R^* the simple extension of R with respect to the uniformity $\{\mathfrak{U}_{\alpha}\}$.

Remark. If $\{U; U \in \mathfrak{U}_{\alpha}, \alpha \in \mathcal{Q}\}$ is a basis of open sets of R, then $\{U_{\alpha}^{*}; U \in \mathfrak{U}_{\alpha}, \alpha \in \mathcal{Q}\}$ is a basis of open sets of R^{*} .

§ 4. Further properties of R^* .

Lemma 13. If $\{S(x, \mathfrak{U}_{\alpha}); \alpha \in \Omega\}$ is a basis of neighbourhoods of a point x of R, then we have

K. MORITA.

(4)
$$\Pi S(x, \mathfrak{U}_{\mathfrak{a}}^*) = \Pi S(x, \mathfrak{U}_{\mathfrak{a}}).$$

Proof. If $y \in (R^* - R) \cdot IIS(x, \mathfrak{U}_a^*)$, then there exists, for any $\alpha \in \Omega$, a set U_α of \mathfrak{U}_a such that $x \in U_\alpha$ and $y \in U_a^*$. For a Cauchy family $\{Y_\mu\}$ of the class y there exist $Y_{\mu_0} \in \{Y_\mu\}$ and $\beta \in \Omega$ such that $S(Y_{\mu_0}, \mathfrak{U}_{\beta}) \subset U_a$. Hence we have $x \in U_a \subset S(Y_\mu, \mathfrak{U}_a)$ for every $Y_\mu \in \{Y_\mu\}$, and consequently we have $S(x, \mathfrak{U}_a) \cdot Y_\mu \neq 0$, which shows that $x \in II\overline{Y}_\mu \cdot R$ by the hypothesis of the lemma. This contradicts the assumption that $\{Y_\mu\}$ is vanishing. Therefore $IIS(x, \mathfrak{U}_a^*) \subset R$. This proves (4).

Lemma 14. If $\{\mathfrak{U}_a\}$ agrees with the topology, then (5) $\Pi S(x, \mathfrak{U}_a^*) = x \text{ or } \bar{x} \cdot R$,

according as $x \in R^* - R$ or $x \in R$.

Proof. Since $\Pi S(x, \mathfrak{ll}_{\alpha}^*) = \overline{x}$ by Theorem 4 and Lemma 1, we have (5) by Lemmas 11 and 13.

Theorem 5. If R is a T-space and $\{\mathfrak{U}_a\}$ is a T-uniformity of R, then R^* is a T-space. Furthermore, if R is a T₀-space, so is R^* .

The first part of the theorem follows from the next Lemma 15. The second part is obvious.

Lemma 15. If $\{\mathfrak{U}_{\alpha}; \alpha \in \mathcal{Q}\}$ is a T-uniformity of a T-space R, then we have $(G_1 \cdot G_2)^* = G_1^* \cdot G_2^*$ for any open sets G_1, G_2 of R.

Proof. Let $x \in G_1^* \cdot G_2^*$ and $x \in C$. Then for a Cauchy family $\{X_{\lambda}\}$ of the class x there exist $X_{\lambda_i} \in \{X_{\lambda}\}$ and $\alpha_i \in \mathcal{Q}$ such that $S(X_{\lambda_i}, \mathfrak{U}_{\alpha_i}) \subset G_i$, i = 1, 2. If we take a common refinement \mathfrak{U}_{β} of \mathfrak{U}_{α_1} and \mathfrak{U}_{α_2} , then we have $S(X_{\lambda_1} \cdot X_{\lambda_2}, \mathfrak{U}_{\beta}) \subset G_1 G_2$. Let $S(X_{\nu}, \mathfrak{U}_{\tau}) \subset U_{\beta}$ for some $X_{\nu} \in \{X_{\lambda}\}$, $\gamma \in \mathcal{Q}$, $U_{\beta} \in \mathfrak{U}_{\beta}$. Then we have $S(X_{\nu}, \mathfrak{U}_{\tau}) \subset C_i(X_{\nu}, \mathfrak{U}_{\tau}) \subset S(X_{\lambda_1}X_{\lambda_2}, \mathfrak{U}_{\beta}) \subset G_1 G_2$. This proves Lemma 15.

Theorem 6. If R is a T_1 -space and $\{\mathfrak{U}_a\}$ is a T-uniformity which agrees with the topology, then R^* is a T_1 -space.

Theorem 6 is a direct consequence of Theorem 5 and Lemmas 13, 14. The following theorem is also clear.

Theorem 7. If R is a (completely) regular space and $\{\mathfrak{U}_{\alpha}\}$ is a (completely) regular uniformity which agrees with the topology, then R^* is a (completely) regular space.

§ 5. Completeness. The case of regular uniformity.¹⁰⁾ A space R with a uniformity $\{\mathfrak{ll}_{\alpha}\}$ is said to be *complete* with respect to the uniformity, if every Cauchy family $\{X_{\lambda}\}$ with respect to $\{\mathfrak{ll}_{\alpha}\}$ is not vanishing, that is, $\prod \overline{X}_{\lambda} \neq 0$.

Theorem 8. A space R is complete with respect to the uniformyit $\{\mathfrak{U}_{\alpha}; \alpha \in \Omega\}$ which is composed of all open coverings of R.

¹⁰⁾ The general case will be treated in the third note.

No. 2.] On the Simple Extension of a Space with Respect to a Uniformity. I.

Proof. If a Cauchy family $\{X_{\lambda}; \lambda \in \Lambda\}$ is vanishing, then $\{R - \bar{X}_{\lambda}; \lambda \in \Lambda\}$ is an open covering of R, and hence it is equal to some \mathfrak{U}_{α} . Since $\{X_{\lambda}\}$ is a Cauchy family there exist $\lambda \in \Lambda$ and $U_{\alpha} \in \mathfrak{U}_{\alpha}$ such that $X_{\lambda} \subset U_{\alpha}$. On the other hand, U_{α} is expressed as $R - \bar{X}_{\mu}$ with some $\mu \in \Lambda$. Hence we have $X_{\lambda} \cdot X_{\mu} = 0$, contrary to the finite intersection property.

Corollary. A regular (or fully normal) space R is complete with respect to some regular (or completely regular) uniformity.¹¹

The extension R^* is not always complete, as will be shown below. Here we shall prove

Theorem 9. If $\{\mathfrak{U}_{\mathfrak{a}}\}$ is a (completely) regular uniformity of a space R which agrees with the topology, then R^* is complete with respect to the uniformity $\{\mathfrak{U}_{\mathfrak{a}}^*\}$.

Weil's theorem and Cohen's theorem are contained in our Theorem 9.¹²) We first prove some lemmas.

Lemma 16. Let $\{\mathfrak{U}_{\alpha}; \alpha \in \Omega\}$ be a regular uniformity of a space R. Then a family $\{X_{\lambda}\}$ of subsets of R with the finite intersection property is a Cauchy family if for any $\alpha \in \Omega$ there exist a set $X_{\lambda} \in \{X_{\lambda}\}$ and a set U_{α} of \mathfrak{U}_{α} such that $X_{\lambda} \subset U_{\alpha}$.

Lemma 17. Let $\{X_{\lambda}\}$ and $\{Y_{\mu}\}$ be Cauchy families with respect to a regular uniformity $\{\mathbb{U}_{\alpha}; \alpha \in \Omega\}$. Then $\{X_{\lambda}\} \sim \{Y_{\mu}\}$, if for any $\alpha \in \Omega$ and any $X_{\lambda} \in \{X_{\lambda}\}$ there exists a set $Y_{\mu} \in \{Y_{\mu}\}$ such that Y_{μ} $\subset S(X_{\lambda}, \mathbb{U}_{\alpha})$.

Since Lemma 16 is clear, we have only to prove Lemma 17. For any $\alpha \in \Omega$ there exist $X_{\lambda_0} \in \{X_\lambda\}$, $\beta \in \Omega$ and $U_{\lambda(\alpha)} \in \mathbb{U}_{\lambda(\alpha)}$ such that $S(X_{\lambda_0}, \mathbb{U}_{\beta}) \subset U_{\lambda(\alpha)}$. Let $Y_{\mu} \subset S(X_{\lambda_0}, \mathbb{U}_{\beta})$. Then we have $S(Y_{\mu}, \mathbb{U}_{\delta}) \subset S(X_{\lambda}, \mathbb{U}_{\alpha})$, where $\delta = \delta(\alpha, U_{\lambda(\alpha)})$.

Cororally. $\{X_{\lambda}\} \sim \{Y_{\mu}\}$ if and only if $\{X_{\lambda} + Y_{\mu}\}$ is a Cauchy family. Here $\{\mathfrak{U}_{\alpha}\}$ is assumed to be a regular uniformity (or a T-uniformity).

Proof of Theorem 9. Let $\{M_{\lambda}; \lambda \in \Lambda\}$ be a Cauchy family of R^* with respect to $\{\mathfrak{U}_a^*; \alpha \in \mathcal{Q}\}$. According to Lemmas 16 and 17 $\{S(M_{\lambda}, \mathfrak{U}_a^*); \lambda \in \Lambda, \alpha \in \mathcal{Q}\}$ is a Cauchy family which is equivalent to $\{M_{\lambda}\}$. By Lemma 7 $\{R \cdot S(M_{\lambda}, \mathfrak{U}_a^*)\}$ is a Cauchy family of R with respect to $\{\mathfrak{U}_a\}$. Hence we have $II \overline{S(M_{\lambda}, \mathfrak{U}_a^*) \cdot R} \neq 0$, and consequently $II\overline{M_{\lambda}} \neq 0$ by Lemma 4. Thus R^* is complete.

Example. In case $\{\mathfrak{U}_{\mathfrak{a}}\}$ is a completely regular uniformity which does not agree with the topology, R^* is not neccessarily complete even if R is a metrizable space. Let R be a subspace

¹¹⁾ This is proved for metric spaces by J. Dieudonne (Ann. L'ecole norm. sup. 56 (1939), p. 280) and for fully normal spaces by T. Shirota (Shijo-Danwakai, 9 (1948), p. 283), and by the present author (ibid., 13 (1949), p. 458).

¹²⁾ Cf. footnotes 1), 2) and the remark at the end of §1.

K. MORITA.

[Vol. 27,

of a two-dimensional Euclidean space such that $R = \{(x, y); 0 < x < 1, 0 < y < 1\} + \{(x, 0); 0 \le x \le 1\} + \{(x, 1); 0 \le x \le 1\}$. Let us denote by U_{nj} the intersection of the set $\{(x, y); 0 \le x \le 1, \frac{j-1}{3^n} < y < \frac{j+1}{3^n}\}$ with R and put $\mathfrak{U}_n = \{U_{ni}; j = 0, 1, \cdots, 3^n\}$. Then it is easy to see that $\{\mathfrak{U}_n\}$ is a completely regular uniformity of R. For any real number α a Cauchy family $\left\{\sum_{i=m}^{\infty} \left(\frac{1}{i+1}, \alpha\right); m=1, 2, \cdots\right\}$ defines a point of R^* which will be denoted by $p^*(\alpha)$. Then $R^* = R + \{p^*(\alpha); 0 < \alpha < 1\}$, and $\left\{\sum_{i=m}^{\infty} p^*\left(\frac{1}{i+1}\right); m=1, 2, \cdots\right\}$ is a vanishing Cauchy family with respect to $\{\mathfrak{U}_n^*\}$. Thus R^* is not complete, (while R^{**} is complete).