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13. On a Locally Compact Group with a Neighbourhood
Invariant under the Inner-automorphisms.

By Hidehiko YAMABE.
(Comm. by K. KUNUGI, M.J.A., Feb. 12, 1951.)

Prof. H. Freudenthal” proved that a locally compact connected
group with an arbitrarily small neighbourhood invariant under the
inner-automorphisms is isomorphic to the direct product of a vector
group and a compact group.

As an extention of the above theorem the author will prove
the following :

Theorem. Let G be a locally compact connected group with o
JSized meighbourhood U. If U is invariant under the inner-automor-
phisms, then G contains a compact normal subgroup N such that GIN
18 isomorphic to the direct product of a wvector group and a compact
group.

Proof. Let m be the left-invariant Haar measure with a real-
valued function J(x) on G such that for an open set V,

m(Va) = m(V)d(x).
Then dJ(x) = 1 because

m(U)d'x) = m(Ux) = m(xU) = m(U).

We see therefore that m is at the same time right-invariant.

Without loss of generality we may assume that U is regularly
open.

Put

N = {z; m(@UwU—2U~U) = 0}.

Then N coincides with the set {¢; xU = U} since U is a regu-
larly open set. Clearly N is a closed subgroup. Furthermore
N is compact and normal since N C UU' and

o 'wal = a'2Ua = o~ Ua = U.

Let us introduce a metric d(X, Y)? into the factor group G/N
by

dX, Y) = maUwyU—zU~yU).

Clearly this metrie is left-invariant. Dloreover this is right-
invariant, for
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d(XA, YA) = mxaUvwyaU—zalU~yal)
= m(xUawyUas—zUaryUa)
= m(xUwyU—aU~yU)
=d(X, Y).

Hence by the Freudenthal’s theorem® G/N is isomorphic to the
direct product of a vector group and a compact group, which com-
pletes the proof.

Corollary. Under the assumption of the theorem the closure of
the commutator subgroup of G s compact.”

Added in proof. Dr K. Iwasawa kindly informed to the author
that he had proved the same theorem independently.
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