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30. Notes on Fourier Analysis (XL):
Remark on the Rademacher System.

By Tamotsu TSUCHIKURA.

Mathematical Institute, Tohoku University.
(Comm. by K. KUNUGI, M.J.A., March 12, 1951.)

81. Let {r.x)} denote the Rademacher system, and let {p.}
(n=1,2, ...) be an increasing sequence of positive numbers.
If we denote P, = p,+p.+---+p, and

(1) @u(x) = [p:ir1(x) + pors() + - + - + pura(a)]/ P,

n=1,2,...), the following theorems are known (J. D. Hill [1]):
(i) The set of convergence points of @.(x) s of measure 0 or 1V ;
(ii) 4f the series

o0

@ S Py

converges, then ¢,.(x) converges to zero almost everywhere; and con-
versely (iii) if @.(x) converges in a set of positive measure, its limit
18 necessarily zero almost everywhere, and moreover
3) lim p,./P, = 0.9

Let us consider now the condition which implies the conver-
gence almost everywhere of ¢,(x). It is also known that the con-
dition (3) is insufficient to assert such convergence (G.Maruyama
[4] and the author [6]). In this note, by determining the decreasing
order of (3), we shall give a sufficient condition different from the
convergence of (2)%.

THEOREM. If we have
(4) p'ur/Pu, = O(lllog log Pn) as n —>» oo,

then @.(x) converges to zero almost everywhere.

The condition (4) is the best possible one of this form, in fact,
there exists an increasing sequence of positive numbers {p,} such
that p./P,= O(1l/loglog P,) as n—> o, and @.(x) diverges almost
everywhere. An example with this property was furnished by Mr.

1) We shall understand, throughout this paper, that the sets are included in
(0, 1), that is, 0<z< 1.

2) Cf. Remark 38, §3.

3) Cf. Remark 4, §3.
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G. Maruyama [4]: Let p, =1 and p, = exp (n/log n)/log n(n = 2)?,
then by easy calculation we have P,~exp (n/log n), log log P,~log n
and p./P,~1/loglog P,; and as he proved the divergence almost
everywhere of @,(x) may be shown using the Kolmogoroff lemma
on the law of the iterated logarithm.

§ 2. Proor orF THEOREM. As P, tends to the infinity with n, we
can choose an integer n, such that

(5) -I_’n, > 19 aﬂd p'uv/Pn. < 1/3 for n _Z N,

in virtue of (4). We shall define a sequence of integers {m.} by
induction. If #n,, n.,..., e, are defined, we can find an integer
n, such that

(6) P’lhk 1 ”Ic gzpfnk_l and Pn/c*" > 2P,,

ey}
this possibility may be easily conceived from the relation :
P“’Ic—]*'l/'P”lc—l = 1 + (p7»k_1+1/PvL,c_l+l)/[1“(pn,c__l-*-l/Pﬂk_‘-*-l)]
<1+(1/83)/(1—1/3) < 2 (k =2).
The sequence {n;} is thus defined. Let us put
S'n(x) = plrl(x) + e+ p'nr’rn(x)’ Sq‘.:(x) = glasx l Sm(ﬁ) I (’n = 1, 2, .o .).

For a given § > 0, denote by E.k =1, 2,...) the set of all & such
that |S.(x)| > 8P, for at least one value of n, s <n<m,, and
put

Mlc_'E[' n,c(xll>8P'nk 1] (k=2’ 3”");‘

If the series ZlEH converges for every 3 >0, we may com-

plete the proof in v1rtue of the well known Borel-Cantelli theorem,
hence it is sufficient to prove the convergence of the series

@ p3{p/AY
since E), < Mk =2, 8,...). From the Marcinkiewicz-Zygmund in-
equality™

1

) j exp (S (x))de < 82 exp (.% aﬁBﬂ)

where ¢ =a,_>0 and B, = pi+---+pin =1, 2,...), we have

4) This definition is different from his in its form, but for our purpose these
two are essentially the same.
5) Cf. Remark 1, §3.
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(@))dw < 32 exp (_ @B,,).

“Ic

1
| M| exp (adP,,_ ) < j exp (aS¥
(1]

Putting a = 8P, _ /B., we deduce easily that

%

©) | M| S 82exp (=8P, [B,) (6=2,3,...).

On. the other hand, by (6) we have
(10) ”lc/ ”Ic —1 (p%’l- +pnk)/ Ny = S puk-Pwk/(Pnk/z)z = 4pnk/Pnk y

and from (4) we have
(11) Py/Poy S 2 (1log log P.,)

for large k, From (5) and (6) we obtain that

~_ 4
= Pnk+l pnkﬂ 2 Pnk+ —§P7"Ic~l

o> (448)P, > (48 k=1,2,...).
Combining (10), (11), (12) and (9) we deduce easily that
| My, | < 82 exp (—2 log log (4/3)"") = 82/[(k—1) log (4/3)]"

12) P

71/10

for large k, and the convergance of (7) is proved, q.e.d.

§ 3. REMARK 1. The inequality (8) is essentially included in
[8], but for the sake of completeness we shall prove it here. From
the inequality ([3], Lem. 2)

j exp (aS: (@))da < 16 j exp (a| Su(@) Ndz (@ > 0)

and the Khintchine inequality (see for example, [2], proof of [456]
p. 131)

1

jl S.(w) [Pda < (2,p2)pB w=12...),
0
we deduce easily that

1 1 1

yexp (@S (x)) dw < 32 jcosh (@] S.u(a) dw=282 z(z_)' S | S, (x) |Pda

1 @ (2’[)) ! —
2 P = —C R o
<3 = ( ) N ’ - B 32 p2=0 ( a Bn) 32 exp( a B“)
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REMARK 2. As we can see in the proof of Theorem, the con-
dition (4) may be replaced by the condition

(13) B,|P, = o(1/log log P,),

but these two conditions (4) and (13) are equivalent to each other.
In fact, (4) implies (18), for B,/P., < p.P./P, = p./P., and we shall
show that (13) involves (4). For sufficiently large n we have
0./P.<_1/4, and as in the proof of Theorem we can find an integer

m = m(n) > n such that P, < P,, < 2P, and P,,., >2P,. From these
inequalities we have

Do __ pfnpm pan + p721+l+ et +p2 pq.Pm.H ZBm
o= m +
Pn Pang Pan Pf)sz g P,,ZP,,, Pﬁm

and Pm+1/Pm = Pm+1/(Pm+l"'pm+l) = 1/(1—pm+l/Pm+l) < 4/37 hence We
have p./P. < (2/3)p./P.+2B,|P,, that is,

p./P. < 6B,./P;, = o(1/log log P,) = o(1/log log P,).

REMARK 8. We shall add a simple proof of the Hill theorem
(@iii). If @.(x) converges in a set of positive measure, it does almost
everywhere by (i); and if its limit is not essentially constant, we
can find two disjoint sets P and @ of positive measure such that
every limit of @,(x) for x € P ig greater than any limit for x ¢ Q.
However, by the Steinhaus theorem ([5]), we can obtain two points
pe€ P and q € Q@ whose distance is a dyadic rational; and for such
points the limits of @.(x) are clearly equal, which contradicts the
above fact. Hence g@.(x) converges to a constant, ¢ say, almost
everywhere. And we can find a point ¢ such that ¢,(x) converges
to ¢ for both x =t and a = 1—¢; then the evident relation @.(f)=
—@,(1—t) shows that ¢ = —¢, thatis, ¢ = 0. Finally, we have, for
almost all =, [pu/P.| = |p.ru(@)/Pa| = | (Su(@)—S.2(a))/Pu| <1 Sul®)]
P.|+]S,i@)/P.| < | @u(@) | +]| @u-s(x) |, which tends to zero, that is,
P./P, — 0 as n - «, q.e.d.

REMARK 4. If {p./P.} is a non-increasing sequence, the condi-
tion (2) implies p./P. = o(1/log P,) and a fortiori our condition (4).
In fact, for ¢ >0, we have for sufficiently large m and for any

n_> m,

e > ST 04/P = (0./P.) 35 (i P~ (p.IP.) log P,

2
b=m

as n — o, in virtue of the well known Cesaro theorem. Hence in
this case the Hill theorem (ii) is a consequence of ours.
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