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39. Weak Topology and Compact Open Topology.

By Hisaharu UMEGAKI.
Mathematical Institute, Kylisy University.
(Comm. by K. KuNuGl, M.J.A., April 12, 1951.)

In a recent paper, J. Dieudonné [1]” has proved the following
Theorem concerning the relation between weak topology and compact
open topology (which is ealled k-topology by R. Arens [2]).

Theorem (Dieudonné). The bounded weak* topology in a Banach
space is identical with the compact open topology.

On the other hand we have given a relation between weak
topology and compact open topology in the following general form
(cf. [3]):

Let X be a T,-topological space, Y a uniform space defined by
the uniform structure [V,.] and further let C be an arbitrary family
of continuous transformations from X to Y. C is called equi-
continuous (p) when, for any p e X and for any V,, there exists a
n.b.d. V(p) of p such that qe V(p) >f(9) € V.(f(p)) for all feC.
Moreover, we induce two structures in C as follows:

We, oy oo, =5 95 (@), 90N € Ve, 1 =1,2,....,n} (p€X)

and
W x={(f,9); (f®), 9(p)e V., pe K}

K being a compact set of X. We shall call these topologies weak
and compact open, respectively, and denote them by =, and +,.

Theorem 1. If C is equi-continuous (p), them weak topology is
sdentical with compact open topology.

Proof. After R. Arens [3], 7 is weaker than any admissible
topology in C. Then, it is sufficient to prove that -, is admissible.
For any p,e X and foe C, W, ,(f) be r,-n.b.d. in C. Since C is
equi-continuous, there exists a n.b.d. V(p) of », such that
q€ V(p) —f(q) € Vuf (p)) for all feC. Thus, for fe W, ,(f) and
p€ V(p), we have f(p)e Vu(fi(p)), and then f(p) is continuous in
the product topology (., X).

By this Theorem, we may easily prove the Dieudonné’s theorem.
Let E and E* be Banach space and its conjugate space respective-
ly, and define the weak*-n.b.d. and k*-n.b.d. as follows:

Ulfoy, & @1y oove @) ={f; | flw)=F ()| e, i=1,2,...,n},
x, e B/
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and

U(fo, & K) =A{f; |fl@)=f(@)| e, ze K}

K being a strongly compact set of E. The compaet open topology
in J. Dieudonné’s Theorem is defined by the above k*-n.b.d. Let
the unit sphere of E* be S*, then S* is equi-continuous and by
our theorem the two topolozies defined by weak* n.b.d. and k*
n.b.d. are identical. Thus J. Dieudonne’s Theorem follows from
our Theorem.

Using bounded weak topology instead of the bounded weak*
topology, we can prove the following theorem :

Theorem 2. In a Banach space E, bounded weak topology
and compact open topology are identical, where the compact open
topology s defined by the k-n.b.d. :

U, &, K¥) = {a; | fa)—f@)| <e,fe K},
K* being strongly compact in E*.

Finally we remark that the identity of convergences of positive
definite funections on L.C. group has been introduced for weak
topology and compact open topology (e.g. [4]). But since, on this
case that compact open topology in different from ours we shall
not discuss of this paper. It will be apper the next paper.
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