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39. Weak Topology and Compact Ope Topology.

By Hisaharu UMEGAKI.
Mathematical Institute, Kyfisyfi University.

(Comm. by K. KUNUGI, M.J..., April 12, 1951.)

Ia a recent paper, J. Dieudonn [1]) has proved the following
Theorem concerning the relation between weak topology and compact
open topology (which is called k-topology by R. Arens [2]).

Theorem (Dieudonn). The bounded weak* topology in a Banach
space is identica with the compact open topology.

On the other hand we have given a relation between weak
topology and compact open topology in the following general form
(cf. [3]):

Le X be a T,-topoloieal space, Y a uniform space defined by
he uniform sgrueture [V] and further let C be an arbitrary family
-of continuous ransformaions from X o Y. C is called equi-
continuous (p) when, for any p e X and for any V, there exists a
n.b.d. V(p) of p such tha q V(p)f(q) V(f(p)) for all f e C.
.Moreover, we induce wo structures in C as follows:

W. , , { (f, g); (f(P), a(P.,)) V, i 1, 2, n} (.p X)

und
W. { (f, g) (f (p), g(p) V, p K}

K being a compact set of X. We shall call these topologies weak
and compact open, respectively, and denote them by r and

Theorem 1. If C is equi-continuous (p), then weak topology is
identica with compact open topology.

Proof. After R. Arens [3], r is weaker than any admissible
topology in C. Then, it is sufficient to prove that r,o is admissible.
For any poeX andfoeC, W,o(fo) be r-n.b.d, in C. Since C is
equi-continuous, there exists a n.b.d. V(po) of p,) such that
q V(po) ---,f(q) V(f (po)) for all f e C. Thus, for f e W,. 0(fo) and
p e V(po), we have f(p) V(fo(po)), and then f(p) is continuous in
the product topology (r, X).

By this Theorem, we may easily prove the Dieudonn6’s theorem.
Let E and E* be Banach space and its conjugate space respective-
ly, and define the weak*-n.b.d, and k*-n.b.d, as follows:

U(fo, e, x,, x,) {f; lfo(x.)-f(x) . e, i 1, 2,..., n},
xeE
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and

U(fo, , K) {f; I.fo(x)-f(x) " x K}

K being a strongly compact set of E. The compact open topology
in 5. Dieudonn4’s Theorem is defined by the above k*-n.b.d. Let
the unit sphere of E* be S*, then S* is equi-continuous and by
our theorem the two topologies defined by weak* n.b.d, and k*
n.b.d, are identical, Thus 5, Dieudonne’s Theorem follows 2rom
our Theorem.

Using bounded weak topology instead of the bounded weak*
topology, we caa prove the ollowiag theorem"

Theorem 2. In a Banch space E, bounded weat topology
and compact open topology are identical, where the compact open
topology is defined by the k-n.b.d.

K*U(xo , K*) {x f(xo)-f (x) f e

K* being st,rongly compact in E*.

Finally we remark that the identity of conwrgences of positive
definite functions on L,C. group has been introduced for weak
topology and compact open topology (e.g. [4]). But since, on this
case that compact open topology in different from ours we shall
not discuss of this paper. It will be apper the next paper.
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