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135. On Linear Modulars.
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(Comm. by K. KUNUGI, M.J.A., Dec. 12, 1951.)

Let R be a modulared semi-ordered linear space” with a
modular m. If R is semi-regular, we can introduce into R two
sorts of norms, namely, the first norm || a|| (@€R) and the second
norm ||| @ ||| (aeR), satisfying the condition

Mell Zllell Z2( alll (acR).
It is proved that, if m is linear or singular?, then we have
(*) all=llalll (aeR).

In this paper we will prove the converse, that is:

Theorem. If a modulared semi-ordered linear space R with o
modular m is semi-regular and the condition (*) is always satisfied,
then m s either linear or singular.

Suppose, in the sequel, that the condition (*) is satisfied and
we denote the common value by || || (asR).

Lemma 1. The first norm and the second norm by the conjugate
modular W of m coincide.

Proof. The first norm by % is the conjugate norm of the
second norm by m, and the second norm by 7 is the conjugate
norm of the first norm by m. Hence our assertion is obtained.

Lemma 2. For o element a such that || al| = 1+m(a), we have
m(a) = 0.

Proof. Suppose m(a) =>1. Then we have m(a) =]l a|| by the
definition of the second norm, contradicting the assumption. Thus
we have m(a)< 1, and hence ||a|| <1”. Therefore, from the
assumption, we conclude m(a) = 0.

Lemma 3. If there is a simple domestic element a satisfying
the condition m(a) =1, then m is a linear modular on [a]R.

Proof. As o is simple and domestic, we can find a positive
element @ of the conjugate space B of R such that

a(a) = m(@)+m(a), and [@]*=[a].
From this relation, we conclude || @|| = @(a) = m(@)+1, because,
for the first norm || @|| by m, we have

lall = gg)glld(w)l, and |a(x) | <m@)+m(x) (xeR)

Thus we obtain 7 (@) = 0 by the previous lemma.
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Next we prove that # is singular in [@]R. If this is not so,
then we can find a number « >1 and a projector [p] such that
0<m(afpla) <1.
Putting b = (1—[p]) @ + a[pP]@, we have
m®) = m (1 — [p) @) + 7 (a[pla) <1,
and hence
lell = sup |Z (@) =6 (a).

m(z)<1
However this relation is impossible, because, by the condition
[@}® = [a], we have [p]a(a) > 0, and hence, as a« > 1,
b(a) = A—[p)a(a)+ aplale) > a@) = || a || .

Hence we have proved that # is singular in [@]R, that is, m is
linear in [a]R.

Proof of the theorem. Let N be the totality of linear elements
of B. Then m is linear in [N;R. For an element ze(1—[N)) R,
m(x) < + oo, we have m(x) <1. Because, if there is an element
xe(L—[N] R such that 1 < m(x) < + «, then we can find a number
a and a projector [p] such that m(a[plr) =1 and a{pl]r is simple
and domestic, and consequently m is linear in [[p]x]R as proved
just above. This contradicts the definition of (1—[N])R. Hence,
for any ZeR(1—[N)), we have

(@) = sup {F(x) —m(x)}
= 3ggl{w(w)—m(w)}
Ssupz(x) = Z|,
m(2)<1
which shows that m is finite in E(1—[N]). Then it is easily seen
that % is linear in R(1—[N]), that is, m is singular in (1—[N])R.

If [N]JR=4=0, 1—-[N]R=0, then for xe[N|R, ye(1—-[N])R we see
easily
Nz+yll =1zl +1lvll, Me+tyll=Max. {2, lly]l}
contradicting the assumption (*). Thus it is proved that
[NIR=0, or A—-[NDR=0.
Hence m is linear or singular on R.



