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Department of Applied Physics, Faculty of Engineering, Osaka University.

(Comm. by M. MhSIMA, i.J.A., April 12, 1952.)

1. Introduction. The information theory was first expounded
by C.E. Shannon and is now attacked by some authors. I suppose,
however, it is sufficiently completed in the case of the discrete
system. But it seems to me somewhat vaguely in the continuous
system. The most difficulty is that, continuous information lacks
the unit of measure. Gabor) and some authors have noticed that
there was such a relation between the bandwidth and the time
duration as the uncertainty relation in quantum mechanics. I think,
this relation plays an essential rle in continuous information.

The definition of the entropy of the system will be most pro-
perly defined as the measure of the uncertainty which this system
owns, or the power to transmit the information. In other words,
information will be defined as the measure of the decrease of un-
certainty. When we have some information about the system in
question, the uncertainty of the system must be decreased. As-
suming the certainty to correspond to the zero uncertainty, the
measure of uncertainty must have difinite sign. In any case, we
could not have more information than that which the first a pri-
ori uncertainty has. Therefore, I think, we can not consider the
negative value of the entropy when defining the entropy to have
the positive sign).

2. The entropy produced by the linear transformations. Now
we consider the simplest case where the number of the random
variables is only one, and the following transformation from x to
a new variable y"

y=ax, (2.1)
where a is a positive constant.

The entropy of the system is defined by Shannon as follows,

H(x)----Ip(x) log p(x) dx. (2.2)

The new entropy of the system which is induced by (2.1) is given by

1) Phil. Mag. 41 (1949) p. 1161.
2) Rather we may consider the negative value of the information which in-

creases the uncertainty of the system than the first expected one. For example,
if we had the exact information which denied any law in physics, we should give
up the every concepts that were introduced by this law and the uncertainty
would increase.
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H(y) H(x) + log a. (2.3)
The relation (2.1) may be considered o have the following

meaning that, if we determine the domain of the random variable
beforehand, the new random variable will have the different domain
from that of x. Corresponding to a X 1, y has the larger or smaller
domain than that of x. The measurement to obtain some informa-
tion which is whatever, restricts the domain in which this random
variable varies. In other words, the information which will be
expected to decrease the uncertainty must limit the domain of the
random variable in question.

The value of a which is larger than 1 gives the larger domain
for the new variable than that for the old one. This tells us that
we must sacrify the certainty in order to obtain the larger value
than the originaI one, as in the case of the amplifier. If we con-
tinue the process of the transformation (2.1), we have after the nth
transformation

H (x)=H(x)-n log a, (2.4)
where a>l. Note that in this case we must use the following
transformation

The second term of (2.4) will be negative infinity as n grows in-
finitel large and the information I will be positive infinity by the
relation

I=H(x)-H(x,)=n log a. (2.6)
This seems queer because we could obtain infinite information by
repeating the measurement. Whatever large a pri-ori value we
may assume about H(x), the value of H(x,) must take the negative
value in this process. On the other hand, H(x)will become infinity
when we stick %o the view-point where the entropy must be posi-
tive essentially. Both cases contradict to the preceding discussion.
Any message signal has two random variables; its time duration
and the bandwidth as in the case where the description of the motion
of a particle needs its position vector and conjugate momentum.

When we consider the two independent variables, the entropy
will be

H(x, y)=H(x) + H(y),
where x denotes the position vector of the particle or the frequency
per second and y does the momentum or the time. Let us now
consider the signal which has the bandwidth a and the time dura-
tion a. If we assume the Gauss’ distributions for both time and
frequency, a and a. are defined by
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a=(x -) --(y--)),-- (2.7)
and have the important relation from the Fourier transformation.

=1. (2.8)

When we assume 2 and to be zero for simplicity, the entropy of
this signal is given by

H(x, y) 2 log + + log

=2(log+).
If we transform x and y by

=ax and =by, (2.10)

the new entropy H(, ) is given by

H(, V)=H() +H()
H(x) +H(y) + log a + log b.

But we have the following relation when the type of the distribu-
tion does not change,

=_e=, ___=. (2.)
a b

As $ and have also Gauss’ distributions, we have- =abO 12 =1.

Consequently,
a

By this relation, the new entropy H($, ) is

H(, )=H(x) +H(y) + log a- log a

( 1) (2.1)

herefore, we my eonelude ha while he aril entropy H()
or H() will ake negative value by some gransformaion, oal
entropy N(w, ) mus kee u he osiie value (2.12), wheh may
be eoidered s ero when assumin he uniform distribution.

Any entropy of he system en be defined by

1

where is he ermissiNe a ri-ori domain. he extension o variaNes is easily obtained. Ee us eon-
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sider the 2 linear relations

(i--1, 2, n)
]---- , b**y,.

The new entropy H( ,; ]k.... ],) is

--H(xx Xn; YiY

--log (xx... x) log

=H(xx.... x; yy...

+logl a** + log[ b**

(2.14)

where ]a and ]b] are the determinants of this transformations.
If the values of these determinants are equal to 1 respectively,
entropy does not change its value by this transformation. By means
of this fact, we can obtain the diagonal representation as follows.
Let us consider the linear transformations

----Ax, =S’ and x-Sx’,

where , ’, x and x’ are considered as the vectors which have n
components respectively and S is the orthogonal transformation
which transforms the matrix (a**) into diagonal form, and its deter-
minant has the value 1.

’=S-ASx’=,x (2.16)

is the relation between new variables x’ and ’. About the other
variable ], we have also the similar relation

2’-- T-BTy’--,y’. (2.17)

We have

because of the values of det(S) and det(T) to be one. Now we
obtain

(2.18)

This result shows that the information is represented by the
logarithm of the diagonal matrix.

3. The entropy of ensembles. Shannon has given the expres-

(2.15)



No. 4.] On the Theory of Continuous Information. 191

sion of a function which is limitted to the band from 0 to W cycles
per second and to a time duration T as follows.

f(t)= X sin (2W--k) (3.1)
r (2Wt- k)

where

and n is defined by the time duration and the frequency band as
n=2WT.

Let us consider the average energy of this function. If T is
very large, this will be given approximately by

4WT

When we consider the average amplitude r; which is

(3.4) becomes

2nr-- X, (3.4)

2WT

by the definition of n.
This result shows the ergodic property of this random series

roughly.
may be considered as the average power of the elementary

signal by which the total signal is constructed. Taking account of this
fact, the entropy of the system introduced by (2.14) will be given by

H(, )---lo + lo/N+-This result will be eonsidered as he ClUaniaion of the Shannon’s
result, which is

1 log N+ (loga//- + -),H=
where N is the average power of the white noise. The result
which is given by (3.7) will be mainfest, if the average power of
the elementary signal is counted as 1%

3) Mathematical Theory of Communication (1949) P. 53.
4) In order to obtain the same result as that by Shanno:, it seems prefer-

able to use the definition

(, y)=--12(/()+H(y)).


