44. On The Interval Containing At Least One Prime Number.

By Jitsuro NAGURA.

(Comm. by Z. Suetuna, M.J.A., April 12, 1952.)

Bertrand-Tschebyschef's theorem (1852) is well-known for the interval between x and 2x where x>1, within which at least one prime number exists; this paper, however, enables us to reduce it up to between x and 6x/5 where $x \ge 25$. In conformity with Ramanujan*, we establish the proof of our theorem upon the following fundamental formula: $T(x) = \sum_{i=1}^{\infty} \psi_i(x/m) = \log \Gamma_i(x) + 1$ where $\psi_i(x)$

$$=\sum_{m=1}^{\infty}\vartheta\left(\sqrt[m]{x}\right)$$
 and $\vartheta\left(x\right)=\sum_{p\leq x}\log p$.

Lemma 1. When n>1,

$$\frac{1}{n}T(x) - T\left(\frac{x}{n}\right) \ge \frac{1}{n}\log\Gamma(x) - \log\Gamma\left(\frac{x+n-1}{n}\right) \qquad (x \ge 1)$$

$$\frac{1}{n}T(x)-T\left(\frac{x}{n}\right) \leq \frac{1}{n}\log \Gamma(x+1)-\log \Gamma\left(\frac{x+1}{n}\right) \qquad (x \geq n).$$

Proof. Since
$$\frac{\Gamma'}{\Gamma}(s) = \int_0^\infty \left(\frac{e^{-t}}{t} - \frac{e^{-st}}{1 - e^{-t}}\right) dt$$
 when $s > 0$,

$$\frac{\Gamma'}{\Gamma}(x) - \frac{\Gamma'}{\Gamma}\left(\frac{x+n-1}{n}\right) = \int_{0}^{\infty} \frac{1}{1-e^{-t}} \left(e^{-\frac{x+n-1}{n}t} - e^{-xt}\right) dt > 0 \quad (x > 1)$$

and
$$\frac{\Gamma'}{\Gamma}(x+1) - \frac{\Gamma'}{\Gamma}(\frac{x+1}{n}) = \int_0^\infty \frac{1}{1 - e^{-t}} \left(e^{-\frac{x+1}{n}t} - e^{-(x+1)t}\right) dt > 0$$
 $(x > 0),$

that is to say,
$$\frac{1}{n}\log\Gamma\left(x\right) - \log\Gamma\left(\frac{x+n-1}{n}\right)$$
 and $\frac{1}{n}\log\Gamma\left(x+1\right)$

$$-\log \Gamma\left(\frac{x+1}{n}\right)$$
 are increasing functions when $x \ge 1$ and $x > 0$ resp.

Hence we have

$$\begin{split} &\frac{1}{n}\log \varGamma(x) - \log \varGamma\left(\frac{x+n-1}{n}\right) \\ & \leq &\frac{1}{n}\log \varGamma([x]+1) - \log \varGamma\left(\frac{[x]+n}{n}\right) \qquad (x \geq 1), \\ & \leq &\frac{1}{n}\log \varGamma\left([x]+1\right) - \log \varGamma\left(\left[\frac{x}{n}\right]+1\right) = &\frac{1}{n}\varGamma(x) - \varGamma\left(\frac{x}{n}\right) \\ & \leq &\frac{1}{n}\log \varGamma\left([x]+1\right) - \log \varGamma\left(\frac{[x]+1}{n}\right) \qquad ([x] \geq n-1), \\ & \leq &\frac{1}{n}\log \varGamma\left(x+1\right) - \log \varGamma\left(\frac{x+1}{n}\right) \qquad (x > 0); \end{split}$$

^{*} S. Ramanujan: A Proof of Bertrand's postulate (Collected papers, 208-209).

then, removing the intermedia, we should obtain this lemma.

As the special case of Lemma 1, we have

$$\begin{split} T\left(x\right) - T\!\!\left(\frac{x}{2}\right) - T\!\!\left(\frac{x}{3}\right) - T\!\!\left(\frac{x}{7}\right) - T\!\!\left(\frac{x}{43}\right) - T\!\!\left(\frac{x}{1806}\right) \\ = & \frac{1}{2}T\!\!\left(x\right) - T\!\!\left(\frac{x}{2}\right) + \frac{1}{3}T\!\!\left(x\right) - T\!\!\left(\frac{x}{3}\right) + \frac{1}{7}T\!\!\left(x\right) - T\!\!\left(\frac{x}{7}\right) \\ & + \frac{1}{43}T\!\!\left(x\right) - T\!\!\left(\frac{x}{43}\right) + \frac{1}{1806}T\!\!\left(x\right) - T\!\!\left(\frac{x}{1806}\right) \\ \leq & \log \Gamma\left(x+1\right) - \log \Gamma\!\left(\frac{x+1}{2}\right) - \log \Gamma\!\left(\frac{x+1}{3}\right) - \log \Gamma\!\left(\frac{x+1}{7}\right) \\ & - \log \Gamma\!\left(\frac{x+1}{43}\right) - \log \Gamma\!\left(\frac{x+1}{1806}\right) & (x \geq 1806), \end{split}$$

which is computed by Stirling's formula, $\log \Gamma(x) = \left(x - \frac{1}{2}\right) \log x$ $-x + \log \sqrt{2\pi} + \frac{\theta}{12x}$ (0<\theta<1), as follows:

$$<(x+1)\log(x+1) - \frac{x+1}{2}\log\frac{x+1}{2} - \frac{x+1}{3}\log\frac{x+1}{3} - \frac{x+1}{7}\log\frac{x+1}{7}$$

$$-\frac{x+1}{43}\log\frac{x+1}{43} - \frac{x+1}{1806}\log\frac{x+1}{1806} - \frac{1}{2}\left(\log(x+1) - \log\frac{x+1}{2}\right)$$

$$-\log\frac{x+1}{3} - \log\frac{x+1}{7} - \log\frac{x+1}{43} - \log\frac{x+1}{1806}\right)$$

$$-(x+1) + \frac{x+1}{2} + \frac{x+1}{3} + \frac{x+1}{7} + \frac{x+1}{43} + \frac{x+1}{1806} - 4\log\sqrt{2\pi} + \frac{1}{12(x+1)}$$

$$=(x+1)\left(\frac{1}{2}\log 2 + \frac{1}{3}\log 3 + \frac{1}{7}\log 7 + \frac{1}{43}\log 43 + \frac{1}{1806}\log 1806\right)$$

$$+2\log(x+1) - \log 1806 - 4\log\sqrt{2\pi} + \frac{1}{12(x+1)}$$

$$<1.0824x + 2\log(x+1) - 10 + \frac{1}{12x} < 1.0851x (x \ge 2000). (1)$$

Similarly we have also

$$\begin{split} T(x) - T\!\!\left(\frac{x}{2}\right) - T\!\!\left(\frac{x}{3}\right) - T\!\!\left(\frac{x}{5}\right) + T\!\!\left(\frac{x}{30}\right) \\ & \ge \log \Gamma(x) - \log \Gamma\!\left(\frac{x+1}{2}\right) - \log \Gamma\!\left(\frac{x+2}{3}\right) - \log \Gamma\!\left(\frac{x+4}{5}\right) + \log \Gamma\!\left(\frac{x+1}{30}\right) \\ & - \frac{1}{30} (\log \Gamma\left(x+1\right) - \log \Gamma\left(x\right)) \quad (x \ge 30), \\ & > x \log x - \frac{x+1}{2} \log \frac{x+1}{2} - \frac{x+2}{3} \log \frac{x+2}{3} - \frac{x+4}{5} \log \frac{x+4}{5} \\ & + \frac{x+1}{30} \log \frac{x+1}{30} - x + \frac{x+1}{2} + \frac{x+2}{3} + \frac{x+4}{5} - \frac{x+1}{30} \end{split}$$

$$\begin{split} &-\frac{1}{2}\Big(\log x - \log \frac{x+1}{2} - \log \frac{x+2}{3} - \log \frac{x+4}{5} + \log \frac{x+1}{30}\Big) \\ &-\log \sqrt{2\pi} - \frac{10}{12(x+1)} - \frac{1}{30}\log x \\ = &\Big\{-\frac{x}{2}\log\Big(1 + \frac{1}{x}\Big) - \frac{x}{3}\log\Big(1 + \frac{2}{x}\Big) - \frac{x}{5}\log\Big(1 + \frac{4}{x}\Big) \\ &+ \frac{x}{30}\log\Big(1 + \frac{1}{x}\Big) + \frac{1}{2} + \frac{2}{3} + \frac{4}{5} - \frac{1}{30} - \frac{5}{6(x+1)}\Big\} \\ &+ (x-1)\Big(\frac{1}{2}\log 2 + \frac{1}{3}\log 3 + \frac{1}{5}\log 5 - \frac{1}{30}\log 30\Big) \\ &- \frac{8}{15}\log x - \frac{7}{15}\log(x+1) - \frac{1}{6}\log(x+2) - \frac{3}{10}\log(x+4) \\ &+ \frac{14}{15}\log 30 - \log \sqrt{2\pi}\,; \end{split}$$

here, the sum of the terms inside the crooked brackets $> \frac{1}{2x} \left(\frac{1}{2} - \frac{1}{3x} \right) + \frac{4}{3x} \left(\frac{1}{2} - \frac{2}{3x} \right) + \frac{16}{5x} \left(\frac{1}{2} - \frac{4}{3x} \right) - \frac{1}{60x} - \frac{5}{6x} = \frac{1}{60x} \left(100 - \frac{958}{3x} \right) > 0$ when $x \ge 4$, then

$$>(x-1)\left(\frac{1}{2}\log 2 + \frac{1}{3}\log 3 + \frac{1}{5}\log 5 - \frac{1}{30}\log 30\right) - \log\left(x + \frac{1}{2}\right)$$
$$-\frac{7}{15}\log\left(x + \frac{8}{3}\right) + \frac{14}{15}\log 30 - \log\sqrt{2\pi}$$
$$>0.9212x - \frac{22}{15}\log(x+2) + 1.3 > 0.916x \qquad (x \ge 2000). \tag{2}$$

Lemma 2. Both the upper and lower bounds of $\psi(x)$ are given by the following:

$$1.086x > \psi(x) > 0.916x - 2.318$$
 (x>0).

Proof. We have

$$T(x) - T\left(\frac{x}{2}\right) - T\left(\frac{x}{3}\right) - T\left(\frac{x}{6}\right)$$

$$= \psi(x) + \sum_{m=1}^{\infty} \left(\psi\left(\frac{x}{6m-1}\right) - 2\psi\left(\frac{x}{6m}\right) + \psi\left(\frac{x}{6m+1}\right)\right)$$

$$\geq \psi(x) - \sum_{m=1}^{\infty} \left(\psi\left(\frac{x}{6m}\right) - \psi\left(\frac{x}{6m+1}\right)\right),$$
then
$$T(x) - T\left(\frac{x}{2}\right) - T\left(\frac{x}{3}\right) - T\left(\frac{x}{7}\right) - T\left(\frac{x}{42}\right)$$

$$\geq \psi(x) + \sum_{m=1}^{\infty} \left(\psi\left(\frac{x}{6m+1}\right) - \psi\left(\frac{x}{7m}\right) - \psi\left(\frac{x}{42m}\right)\right)$$

$$\geq \psi(x) - \sum_{m=1}^{\infty} \left(\psi\left(\frac{x}{42m}\right) - \psi\left(\frac{x}{42m+1}\right) \right),$$

and once more

$$\begin{split} T(x) - T\left(\frac{x}{2}\right) - T\left(\frac{x}{3}\right) - T\left(\frac{x}{7}\right) - T\left(\frac{x}{43}\right) - T\left(\frac{x}{1806}\right) \\ & \geq \psi\left(x\right) + \sum_{m=1}^{\infty} \left(\psi\left(\frac{x}{42m+1}\right) - \psi\left(\frac{x}{43m}\right) - \psi\left(\frac{x}{1806m}\right)\right) \\ & \geq \psi\left(x\right) - \sum_{m=1}^{\infty} \left(\psi\left(\frac{x}{1806m}\right) - \psi\left(\frac{x}{1806m+1}\right)\right) \geq \psi\left(x\right) - \psi\left(\frac{x}{1806}\right). \end{split}$$

Hence, according to (1), we have $\psi(x)-\psi(x/1806)<1.0851x$ ($x \ge 2000$); and since it is verifiable that this is true also when 0 < x < 2000, let us write x, x/1806, $x/1806^2$, $x/1806^3$, ... for x, and add them side by side, then we obtain

$$\psi(x) < 1.0851 \left(x + \frac{x}{1806} + \frac{x}{1806^2} + \frac{x}{1806^3} + \dots \right) < 1.086x \quad (x > 0).$$

Next, we have

$$T(x) - T\left(\frac{x}{2}\right) - T\left(\frac{x}{3}\right) - T\left(\frac{x}{5}\right) + T\left(\frac{x}{30}\right)$$

$$= \psi(x) + \psi\left(\frac{x}{7}\right) + \psi\left(\frac{x}{11}\right) + \psi\left(\frac{x}{13}\right) + \psi\left(\frac{x}{17}\right)$$

$$+ \psi\left(\frac{x}{19}\right) + \psi\left(\frac{x}{23}\right) + \psi\left(\frac{x}{29}\right) + \dots *$$

$$- \psi\left(\frac{x}{6}\right) - \psi\left(\frac{x}{10}\right) - \psi\left(\frac{x}{12}\right) - \psi\left(\frac{x}{15}\right) - \psi\left(\frac{x}{18}\right)$$

$$- \psi\left(\frac{x}{20}\right) - \psi\left(\frac{x}{24}\right) - \psi\left(\frac{x}{30}\right) - \dots * \leq \psi(x),$$

therefore, according to (2), we have $\psi(x) > 0.916x$ ($x \ge 2000$); and since it is also verifiable that 0.916x - 2.318, instead of 0.916x, is less than $\psi(x)$ when 0 < x < 2000, we obtain

$$\psi(x) > 0.916x - 2.318$$
 (x > 0).

Theorem. There exists at least one prime number p such as:

$$a_n \le x $\binom{n = 1, 2, 3, 4, 5;}{a_n = 2, 8, 9, 24, 25, resp.}$$$

Proof. In order to prove $\vartheta\left(\frac{n+1}{n}x\right) - \vartheta(x) > 0$ for the values of x as small as possible, let us use

^{*} The denominator in every term after $\phi\left(x/29\right)$ or $-\phi\left(x/30\right)$ is congruent to some of preceding ones with respect to 30.

$$\psi(x) - \psi(\sqrt[3]{x}) - \psi(\sqrt[3]{x}) \ge \vartheta(x) \ge \psi(x) - \psi(\sqrt[3]{x}) - \psi(\sqrt[3]{x}) - \psi(\sqrt[5]{x}),$$
 and we have

$$\vartheta\left(\frac{n+1}{n}x\right) - \vartheta(x) \ge \psi\left(\frac{n+1}{n}x\right) - \psi\left(\sqrt{\frac{n+1}{n}x}\right) - \psi\left(\sqrt[3]{\frac{n+1}{n}x}\right) - \psi\left(\sqrt[5]{\frac{n+1}{n}x}\right) - \psi\left(\sqrt[5]{\frac{n+$$

then, by Lemma 2,

$$> 0.916 \left(\frac{n+1}{n}x + \sqrt{x} + \sqrt[3]{x}\right) - 6.954$$

$$-1.086 \left(x + \sqrt{\frac{n+1}{n}}x + \sqrt[3]{\frac{n+1}{n}}x + \sqrt[5]{\frac{n+1}{n}}x\right)$$

which becomes positive when $n \le 5$ for sufficiently large values of x, that is to say

$$\vartheta (2x) - \vartheta (x) > 0 \qquad (x \ge 18),
\vartheta \left(\frac{3}{2}x\right) - \vartheta (x) > 0 \qquad (x \ge 48),
\vartheta \left(\frac{4}{3}x\right) - \vartheta (x) > 0 \qquad (x \ge 109),
\vartheta \left(\frac{5}{4}x\right) - \vartheta (x) > 0 \qquad (x \ge 293)
\vartheta \left(\frac{6}{5}x\right) - \vartheta (x) > 0 \qquad (x \ge 2103).$$

and

While there is surely at least one prime number between x and (n+1)x/n when $2 \le x < 18$, $8 \le x < 48$, $9 \le x < 109$, $24 \le x < 293$ and $25 \le x < 2103$ according as n=1, 2, 3, 4 and 5 resp.; our theorem is thus proved.