90. On Cauchy's Problem in the Large for Wave Equations.

By Kôsaku Yosida.
Mathematical Institute, Nagoya University. (Comm. by Z. Suetuna, m.J.A., Oct. 13, 1952.)

§ 1. Introduction. Let R be a connected domain of an orientable, m-dimensional Riemannian space with the metric $d s^{2}=g_{i j}(x) d x^{i} d x^{j}$. We consider the wave equation

$$
\begin{equation*}
\frac{\partial^{2} u(x, t)}{\partial t^{2}}=A_{x} u(x, t),-\infty<t<\infty, \tag{1.1}
\end{equation*}
$$

with Cauchy's data

$$
\begin{equation*}
u(x, 0)=f(x), \quad \frac{\partial u(x, 0)}{\partial t}=h(x) \tag{1.2}
\end{equation*}
$$

Here the differential operator $A=A_{x}$ defined by

$$
\begin{equation*}
A_{x} f(x)=b^{i j}(x) \frac{\partial^{2} f(x)}{\partial x^{i} \partial x^{j}}+a^{i}(x) \frac{\partial f(x)}{\partial x^{i}}+e(x) f(x) \tag{1.3}
\end{equation*}
$$

is elliptic in the sense that the quadratic form $b^{i j}(x) \xi_{i} \xi_{j}$ is >0 for $\sum_{i}\left(\xi_{i}\right)^{2}>0$. Since the value of $A_{x} f(x)$ must be independent of the local coordinates $\left(x^{1}, \ldots, x^{m}\right)$ of the point x, the coefficients $a^{i}(x)$ and $b^{i j}(x)$ must be transformed, by the coordinates change $x \rightarrow \bar{x}$, respectively into
(1.4) $\quad \bar{a}^{i}(\bar{x})=\frac{\partial \bar{x}^{i}}{\partial x^{k}} a^{k}(x)+\frac{\partial^{2} \bar{x}^{i}}{\partial x^{k} \partial x^{s}} b^{k s}(x)$ and $\bar{b}^{i s}(\bar{x})=\frac{\partial \bar{x}^{i}}{\partial x^{k}} \frac{\partial \bar{x}^{j}}{\partial x^{s}} b^{k s}(x)$.

For the sake of simplicity, we assume that $g_{i j}(x), b^{i j}(x), a^{i}(x)$ and $e(x)$ are infinitely differentiable functions of the local coordinates (x^{1}, \ldots, x^{m}).

Since we are concerned with the existence in the large of the integral of (1.1)-(1.2), it will perhaps be necessary to rely upon operator-theoretical method ${ }^{1)}$. We here assume that the operator A_{x} is, as in the case of Laplacian, formally self-adjoint and nonpositive definite, viz.

$$
\begin{gather*}
\int_{R}\left(A_{x} f(x)\right) h(x) d x=\int_{R} f(x)\left(A_{x} h(x)\right) d x \text { and } \int_{R}\left(A_{x} f(x)\right) f(x) d x \leqq 0 \tag{1.5}\\
\quad\left(d x=\sqrt{g(x)} d x^{1} \ldots d x^{m}, \quad g(x)=\operatorname{det}\left(g_{i j}(x)\right),\right.
\end{gather*}
$$

if $f(x)$ and $h(x)$ are twice continuously differentiable such that $f(x)$ vanishes outside a compact set contained in the interior of R. Then we may integrate, by virtue of the Hilbert space technique, an operator-theoretical variant of (1.1)-(1.2) It will next be shown, by a parametrix consideration, that this operator-theoretical integral is, for sufficiently smooth initial data (1.2), equivalent to the ordinary integral of the genuine differential equation (1.1)-(1.2). It is
to be noted that the Lemma 2 below, which is of the type of Poisson's equation, may be of use in other problems relating to the elliptic differential operator.
§ 2. An operator-theoretical integration. Let L be the linear space of twice continuously differentiable real-valued functions $f(x)$ vanishing outside compact set and satisfying a certain linear boundary condition on the boundary ∂R of R. It is assumed that the boundary condition is chosen in such a way that we have

$$
\begin{align*}
& \int_{R}\left(A_{x} f(x)\right) h(x) d x=\int_{R} f(x)\left(A_{x} h(x)\right) d x \text { and } \tag{2.1}\\
& \int_{R}\left(A_{x} f(x)\right) f(x) d x \leq 0 \quad \text { for } \quad f, h \in L \tag{2.2}
\end{align*}
$$

Such boundary condition is possible because of the assumption (1.5). L is a pre-Hilbert space by the norm

$$
\begin{equation*}
\|f\|=\left(\int_{R} f(x)^{2} d x\right)^{1 / 2}=(f, f)^{1 / 2} \tag{2.3}
\end{equation*}
$$

such that the completion L^{a} of this linear normed space L is a real Hilbert space $L_{2}(R)$.

We consider $A=A_{x}$ to be an additive operator defined on $L \subseteq L^{a}$ into L^{a}. Let \tilde{A} be a non-positive definite self-adjoint extension of A. Such \tilde{A} may be defined as follows ${ }^{2}$: Let L^{\prime} be the completion of the linear space L by the new metric

$$
\begin{equation*}
\|f\|^{\prime}=((-A f, f)+(f, f))^{1 / 2} \tag{2.4}
\end{equation*}
$$

Because of (2.2), we may identify L^{\prime} with a linear subspace of L^{a}. Then
(2.5) \tilde{A} is the contraction of the adjoint operator A^{*} of A restricted to the domain $D(\tilde{A})=L^{\prime} \cap D\left(A^{*}\right)$, where $D\left(A^{*}\right)$ is the domain of A^{*}. We have, by (2.1),

$$
\begin{equation*}
L \leqq D(\tilde{A}) \tag{2.6}
\end{equation*}
$$

Let (2.7):

$$
-\tilde{A}=\int_{0}^{\infty} \lambda d E(\lambda)
$$

be the spectral resolution of $-\tilde{A}$ and let

$$
\begin{equation*}
(-\tilde{A})^{1 / 2}=\int_{0}^{\infty} \lambda^{1 / 2} d E(\lambda) \tag{2.8}
\end{equation*}
$$

be the positive square root of the operator $-\tilde{A}$. Surely we have
(2.9) the domain $D\left((-\tilde{A})^{1 / 2}\right)$ of $(-\tilde{A})^{1 / 2} \supseteq D(\tilde{A})$, and hence, by (2.6),

$$
\begin{equation*}
L \leqq D(\tilde{A}) \subseteq D\left((\tilde{A})^{1 / 2}\right) \tag{2.6}
\end{equation*}
$$

Let us consider, for f and $h \in L$,

$$
\begin{align*}
\tilde{u}(x, t) & =\left(\cos (-\tilde{A})^{1 / 2} t\right) f(x)+\left(\sin \left((-\tilde{A})^{1 / 2} t\right) /(-\tilde{A})^{1 / 2}\right) h(x) \tag{2.10}\\
& =\int_{0}^{\infty} \cos \left(\lambda^{1 / 2} t\right) d E(\lambda) f(x)+\int_{0}^{\infty}\left(\sin \left(\lambda^{1 / 2} t\right) / \lambda^{1 / 2}\right) d E(\lambda) h(x) .
\end{align*}
$$

The convergence of the right hand integral is clear. We see, by (2.6)', that $\tilde{u}(x, t)$ satisfies the operator-theoretical differential equation

$$
\begin{align*}
& \partial_{t} \partial_{t} u(x, t)=\tilde{A}_{x} \tilde{u}(x, t), \text { where } \tag{2.11}\\
& \partial_{t} \tilde{u}(x, t)=\text { strong } \lim _{\delta \rightarrow 0} \delta^{-1}(\tilde{u}(x, t+\delta)-\tilde{u}(x, t)) .
\end{align*}
$$

We have also (2.12):

$$
\tilde{u}(x, 0)=f(x), \quad \partial_{t} \tilde{u}(x, 0)=h(x)
$$

Therefore we have:
Theorem 1. (2.10) is an operator-theoretical solution of Stokes' type of the operator-theoretical variant (2.11)-(2.12) of (1.1)-(1.2).

Let D be the subset of L consisting of all the infinitely differentiable functions $f(x)$ such that $f(x) \in$ the domain $D\left(\tilde{A}_{x}^{q}\right)$ of the operator \tilde{A}_{x}^{q} for every $q>0$. Such is the case for infinitely differentiable function $f(x)$ when $f(x)$ vanishes outside a compact set contained in the interior of R. From the definition (2.10) and (2.6)', we see that (2.13): if f and h are both in D, the function $\tilde{u}(x, t)$ given by (2.10) is in the domain $D\left(\tilde{A}_{x}^{q}\right)$ for any $q>0$. We will show, in $\S 4$, that such $\tilde{u}(x, t)$ is equal (x, t)-almost everywhere to a function $u(x, t)$ which is infinitely differentiable in (x, t), so that $u(x, t)$ is an ordinary integral of the genuine differential equation (1.1)-(1.2).
§3. The parametrix for the iterated elliptic operator. The hypothesis of the formal self-adjointness of the operator $A=A_{x}$ is not needed in this §. Thus let

$$
\begin{equation*}
A_{*}^{\prime} f(x)=b^{i j}(x) \frac{\partial^{2} f}{\partial x^{i} \partial x^{j}}+c^{i}(x) \frac{\partial f}{\partial x^{i}}+p(x) f(x) \tag{3.1}
\end{equation*}
$$

be the formally adjoint operator of A_{x}. We will construct a parametrix for the iterated elliptic operator (3.2): $A_{x}^{\prime q-1}$. To this purpose, let $\Gamma(P, Q)=r(P, Q)^{2}$ be the square of the smallest distance between the two points $P=\left(x^{\prime 1}, \ldots, x^{\prime m}\right)$ and $Q=\left(x^{1}, \ldots, x^{m}\right)$ of R according to the new metric (3.3): $d r^{2}=b_{i j}(x) d x^{i} d x^{j}$, where $\left(b_{i j}(x)\right)=\left(b^{i j}(x)\right)^{-1}$. We have then:

Lemma 13). Let the dimension m be odd. For any positive integer n and for any even $\alpha \geqq 0$, we may construct a parametrix $W_{a}(P, Q)$ for the operator $A^{\prime}=A_{x}^{\prime}$:

$$
\begin{equation*}
W_{\alpha}(P, Q)=\sum_{k=0}^{n} \Gamma(P, Q)^{(\alpha+2 k-m) / 2} V_{k}(P, Q) / K_{m}(\alpha) L_{m}(\alpha+2 k) \tag{3.4}
\end{equation*}
$$

where $\quad K_{m}(\alpha)=2^{\alpha / 2} \Gamma(\alpha / 2), L_{m}(\alpha+2 k)=2^{(\alpha+2 k) / 2} \Gamma((\alpha+2 k+2-m) / 2)$ and $V_{k}(P, Q)$ are infinitely differentiable in the vicinity of $Q=P$ and $V_{0}(P, P)=1$
so that (3.5): $\quad A_{x}^{\prime} W_{\alpha+2}(P, Q)=W_{\alpha}(P, Q)$

$$
\left.+\Gamma(P, Q)^{(\alpha+2+2 n-m) / 2} A_{x}^{\prime} W_{\alpha}(P, Q) / K_{m}(\alpha+2) L_{m}(\alpha+2+2 n)\right)
$$

Proof. We introduce the normal coordinates y of $Q=\left(x^{1}, \ldots, x^{m}\right)$ in the vicinity of P :

$$
\begin{equation*}
y^{\sigma}=(\Gamma(P, Q))^{1 / 2}\left(\frac{d x^{\sigma}}{d r}\right)_{r=0} \tag{3.6}
\end{equation*}
$$

Let (3.7): $\quad d r^{2}=\beta_{i j}(y) d y^{i} d y^{j}$.
We have the well-known formulae

$$
\begin{equation*}
\Gamma(P, Q)=\beta_{i j}(0) y^{i} y^{j}, \quad \beta_{i j}(y) y^{j}=\beta_{i j}(0) y^{j} . \tag{3.8}
\end{equation*}
$$

By virtue of (3.8), the operator

$$
\begin{align*}
A^{\prime}=A_{y}^{\prime}= & \beta^{i j}(y) \frac{\partial^{2}}{\partial y^{i} \partial y^{j}}+\alpha^{t}(y) \frac{\partial}{\partial y^{i}}+\gamma(y) \tag{3.9}\\
& \left(\left(\beta^{i j}(y)\right)=\left(\beta_{t j}(y)\right)^{-1}\right),
\end{align*}
$$

when applied to the function of the form $f(\Gamma(P, Q), y)$, may be written as follows:

$$
\begin{align*}
& \text { (3.10) } \quad A_{y}^{\prime} f=4 \Gamma \frac{\partial^{2} f}{\partial \Gamma^{2}}+4 y^{\sigma} \frac{\partial^{2} f}{\partial \Gamma \partial y^{\sigma}}+M \frac{\partial f}{\partial \Gamma}+N(f), \quad \text { where } \tag{3.10}\\
& M=\beta^{i j} \frac{\partial^{2} \Gamma}{\partial y^{i} \partial y^{j}}+\alpha^{i} \frac{\partial \Gamma}{\partial y^{i}}=2 m+0(y), \quad N(f)=\beta^{i j} \frac{\partial^{2} f}{\partial y^{i} \partial y^{j}}+\alpha^{i} \frac{\partial f}{\partial y^{i}}+\gamma f .
\end{align*}
$$

The differentiation in A_{y}^{\prime} and in $N(f)$ are to be performed as if Γ and y^{σ} are independent variables. Hence, by

$$
\begin{equation*}
\alpha / K_{m}(\alpha+2)=1 / K_{m}(\alpha),(\alpha+2-m) / L_{m}(\alpha+2)=1 / L_{m}(\alpha) \tag{3.11}
\end{equation*}
$$

we obtain $\quad A_{y}^{\prime} W_{\alpha+2}(P, Q)=\sum_{k=0}^{n} \frac{\Gamma(P, Q)^{(\alpha+2 k-m) / 2}}{K_{m}(\alpha+2) L_{m}(\alpha+2 k)}$

$$
\begin{aligned}
& \times\left\{2 y^{\sigma} \frac{\partial V_{k}}{\partial y^{\sigma}}+\left(\frac{M}{2}+2 k-m+\alpha\right) V_{k}+A_{y}^{\prime} V_{k-1}(P, Q)\right\} \\
& +\frac{\Gamma(P, Q)^{(\alpha+2+2 n-m) / 2}}{K_{m}(\alpha+2) L_{m}(\alpha+2+2 n)} A_{y}^{\prime} V_{n} \\
& =W_{\alpha}(P, Q)+\frac{\Gamma(P, Q)^{(\alpha+2+2 n-m) / 2}}{K_{m}(\alpha+2) L_{m}(\alpha+2+2 n)} A_{y}^{\prime} V_{n}
\end{aligned}
$$

if $V_{k}(P, Q)$ may be so determined that $V_{k}(P, Q)$ are infinitely differentiable in the vicinity of $Q=P, V_{-1}(P, Q) \equiv 0, \quad V_{0}(P, P)=1$ and

$$
\begin{align*}
2 y^{\sigma} \frac{\partial V_{k}}{\partial y^{\sigma}} & +\left(\frac{M}{2}+2 k-m\right) V_{k}(P, Q)+A_{y}^{\prime} V_{k-1}(P, Q) \tag{3.12}\\
& =0, \quad(k=0,1, \ldots, n)
\end{align*}
$$

Such $V_{k}(P, Q)$ exist by virtue of the order relation

$$
\begin{equation*}
M=2 m+0(y) \tag{3.13}
\end{equation*}
$$

Proof. By putting $y^{\sigma}=r \eta^{\sigma}$, (3.12) is reduced to the ordinary differential equation in r containing the parameters η :
(3.12) $2 r \frac{d V_{k}(P, r \eta)}{d r}+\left(\frac{M(r \eta)}{2}+2 k-m\right) V_{k}(P, r \eta)=-A_{y}^{\prime} V_{k-1}(P, r \eta)$.

Hence, by $V_{-1}(P, Q) \equiv 0$ and $V_{0}(P, P)=1$, we obtain

$$
\begin{align*}
& V_{0}=\exp \left(-\int_{0}^{r}(2 t)^{-1}\left(\frac{M}{2}-m\right) d t\right) \tag{3.14}\\
& V_{k}=-V_{0} r^{-k} \int_{0}^{r} t^{k-1} V_{0}^{-1} A_{y}^{\prime} V_{k-1} d t
\end{align*}
$$

Corollary.

$$
\begin{align*}
& A_{y}^{\prime q-i} W_{2 q}(P, Q)=W_{2 i}(P, Q)+0\left(\Gamma(P, Q)^{(2 i+2+2 n-m) / 2}\right) \tag{3.15}\\
& A_{y}^{\prime} W_{2 q}(P, Q)=0\left(\Gamma(P, Q)^{(2+2 n-m) / 2}\right) \text { for } P \neq Q
\end{align*}
$$

Next let P_{0} be any inner point of R and consider, for sufficiently small $\varepsilon>0$,
(3.16) $\quad U_{\alpha}(P, Q)=W_{\alpha}(P, Q) \delta(\Gamma(P, Q)) \delta\left(\Gamma\left(P_{0}, P\right)\right)$, where $\delta(x) \geqq$ is infinitely differentiable in $x \geqq 0$ such that $\delta(x)=1$ or 0 according as $x \leqq \varepsilon$ or $x \geqq 2 \varepsilon$.
Thus, in a certain vicinity of P_{0},

$$
\begin{array}{ll}
\text { (3.17) } & A_{y}^{\prime q-1} U_{2 q}(P, Q)=U_{2 i}(P, Q)+0\left(\Gamma(P, Q)^{(2 i+2+2 n-m) / 2}\right), \\
& A_{y}^{\prime q} U_{2 q}(P, Q)=0\left(\Gamma(P, Q)^{(2+2 n-m) / 2}\right) \text { for } P \neq Q .
\end{array}
$$

After these preliminaries, we may prove an analogue of Poisson's equation, viz.

Lemma 2. Let the dimension m be odd and $\geqq 2$, and let $k(Q)$ $b e \in L$. Then we have, for $2 n \geqq m$,
(3.18) $C(P) k(P)=\int_{R}\left(A_{y^{\prime q-1}} U_{2 q}(P, Q)\right)\left(A_{y} k(Q)\right) d Q$, where $C(P)$ is infinitely differentiable and $\neq 0$ in a certain vicinity of P_{0}.
Proof. We have, by Green's integral theorem and (3.17),

$$
\begin{aligned}
& \int_{R}\left(A_{y}^{\prime q-1} U_{2 q}(P, Q)\left(A_{y} k(Q)\right) d Q\right. \\
& =\lim _{\kappa \rightarrow 0} \int_{R-\{Q ; \Gamma(P, Q) \leq \kappa\}}\left(A_{y}^{q-1} U_{2 q}(P, Q)\right)\left(A_{y} k(Q)\right) d Q \\
& =\lim _{\kappa \rightarrow 0} \int_{R-\{Q ; \Gamma(P, Q) \leqq \kappa\}}\left(A_{y}^{\prime}\left(A_{y}^{\prime q-1} U_{2 q}(P, Q)\right) k(Q) d Q\right. \\
& +\lim _{\kappa \rightarrow 0}{ }_{\Gamma} \int_{\Gamma}\left(P,=\kappa=\frac{A_{y}^{\prime q-1} U_{2 q}(P, Q)}{\partial \nu} k(Q)-\left(A_{y}^{\prime q-1} U_{2 q}(P, Q)\right) \frac{\partial k(Q)}{\partial \nu}\right\} d S
\end{aligned}
$$

where ν is the transversal direction defined by

$$
\begin{equation*}
\frac{\partial \nu}{\partial y^{i}}=\left(\sqrt{g(y)} \beta^{i j}(y) \cos \left(r, y^{j}\right)\right)^{-1}, \quad(i=1,2, \ldots, m) \tag{3.19}
\end{equation*}
$$

and $d S$ is the hypersurface element on $\Gamma(P, Q)=\kappa$.
We have, from (3.17),

$$
\begin{aligned}
& A_{y}^{q_{q}} U_{2 q}(P, Q)=0\left(\Gamma(P, Q)^{(2+2 n-m) / 2}\right) \text { for } P \neq Q, \\
& A_{y}^{\prime q-1} U_{2 q}(P, Q)=(4 \Gamma((4-m) / 2))^{-1} \Gamma(P, Q)^{(2-m) / 2}+0\left(\Gamma(P, Q)^{(2+2 n-m) / 2}\right)
\end{aligned}
$$

Hence we have, when $\Gamma(P, Q)=\kappa$ tends to zero

$$
\begin{aligned}
& \frac{\partial A_{y}^{\prime q-1} U_{2 q}(P, Q)}{\partial \nu} \div\left(8 \Gamma((4-m) / 2)^{-1}(2-m) \Gamma^{-m / 2} \frac{\partial \Gamma}{\partial y^{i}} \sqrt{g(y)} \beta^{\ell j}(y) \cos \left(r, y^{j}\right)\right. \\
& \quad=(4 \Gamma(4-m) / 2)^{-1}(2-m) \Gamma^{-m / 2} \beta_{i k}(0) y^{k} \sqrt{g(y)} \beta^{i j}(y) \cos \left(r, y^{j}\right) \quad(\text { by }(3.8)) \\
& \quad=\left(4 \Gamma((4-m) / 2)^{-1}(2-m) y^{j} \Gamma^{-m / 2} \sqrt{g(y)} \cos \left(r, y^{j}\right) \quad(\text { by }(3.8))\right. \\
& \quad=\left(4 \Gamma((4-m) / 2)^{-1}(2-m) \Gamma^{(1-m) / 2} \sqrt{g\left(r^{\eta}\right)} \sum_{j=1}^{m}\left(\eta^{j}\right)^{2} \quad\left(\text { by putting } y^{j}=r \eta^{j}\right) .\right.
\end{aligned}
$$

Therefore we have $\quad \int_{R}\left(A_{y}^{q-1} U_{2 q}(P, Q)\left(A_{y} k(Q)\right) d Q\right.$

$$
\begin{aligned}
& =\lim _{\kappa \rightarrow 0} \int_{\beta_{i j}(P) \eta^{i} \eta^{j}=1}\left(4 \Gamma((4-m) / 2)^{-1}(2-m) \kappa^{(1-m) / 2} \sqrt{g(\sqrt{\kappa} \eta)} \sum_{j=1}^{m}\left(\eta^{j}\right)^{2} d S_{\sqrt{\kappa} \eta}\right. \\
& =(4 \Gamma(4-m) / 2)^{-1}(2-m) \sqrt{g(P)} \int_{\beta_{i} j(P) \eta^{i} \eta^{j}=1} \sum_{j=1}^{m}\left(\eta^{j}\right)^{2} d S_{\eta} .
\end{aligned}
$$

This proves (3.16).
§4. The differentiability of the operator-theoretical solution $\tilde{u}(Q, t)$. We first remark that we are dealing with the case $A^{\prime}=A$. We will prepare two lemmas.

Lemma 3. For fixed t, there exists a sequence of functions $\left\{k_{i}(Q)\right\} \leqq L$ such that
(4.1) strong $\lim _{i \rightarrow \infty} k_{i}(Q)=\tilde{u}(Q, t)$,

$$
\lim _{i \rightarrow \infty} \int_{R} w(Q)\left(A_{y} k_{i}(Q)\right) d Q=\int_{R} w(Q)\left(\tilde{A}_{y} \tilde{u}(Q, t)\right) d Q \text { for every } w(Q) \in L
$$

Proof. By $\tilde{u}(Q, t) \in D\left(\tilde{A}_{y}\right)$ and the definition (2.5) of \tilde{A}, there exists a sequence of functions $\left\{k_{i}(Q)\right\} \subseteq L$ such that strong $\lim _{i \rightarrow \infty} k_{i}(Q)$ $=\tilde{u}(Q, t)$. We have, for any $\mathrm{w}(Q) \in L$,

$$
\begin{aligned}
\lim _{i \rightarrow \infty} \int_{R} w(Q) & \left(A_{y} k_{i}(Q)\right) d Q=\lim _{i \rightarrow \infty} \int_{R}\left(A_{y} w(Q)\right) k_{i}(Q) d Q \\
= & \int_{R}\left(A_{y} w(Q)\right) \tilde{u}(Q, t) d Q=\int_{R} w(Q)\left(\tilde{A}_{y} \tilde{u}(Q, t)\right) d Q
\end{aligned}
$$

by (2.1) and by the definition (2.5) of \tilde{A}.
Lemma 4. We have, for $w(Q) \in L$ and for $1 \leqq i \leqq q$,

$$
\begin{equation*}
\int_{R} w(P)\left(A_{y}^{q-i} U_{2 q}(P, Q)\right) d P \in L \tag{4.2}
\end{equation*}
$$

Proof. By (3.16), we see that the integral vanishes outside a compact coordinate neighbourhood of P_{0}. Moreover, by (3.4), (3.15), (3.16) and (3.17), we see that the integral is twice continuously differentiable in Q (Q.E.D.).

We have, by (3.18),

$$
C(P) k_{i}(P)=\int_{R}\left(A_{y}^{q-1} U_{2 q}(P, Q)\right)\left(A_{y} k_{i}(Q)\right) d Q
$$

in a certain vicinity of P_{0}. Let $w(Q) \in L$ vanish outside this vicinity. Letting $i \rightarrow \infty$ in

$$
\int_{R} w(P) C(P) k_{i}(P) d P=\int_{R} w(P) d P\left\{\int_{R}\left(A_{y}^{q-1} U_{2 q}(P, Q)\right)\left(A_{y} k_{i}(Q)\right) d Q\right\},
$$

we obtain, by the Lemma 3 and Lemma 4,

$$
\begin{equation*}
\tilde{u}(P, t)=C(P)^{-1} \int_{R}\left(A_{y}^{q-1} U_{2 q}(P, Q)\right)\left(\tilde{A_{y}} \tilde{u}(Q, t)\right) d Q \text { almost every- } \tag{4.3}
\end{equation*}
$$ where in P in a certain vicinity of P_{0}.

The function $\tilde{u}(Q, t)$ belongs to $D\left(\tilde{A}_{y}^{p}\right)$ for every $p>0$. Thus we see, by the Lemma 3, that there exists a sequence of functions $\left\{k_{i}(Q)\right\} \leqq L$ such that
(4.4) strong $\lim _{i \rightarrow \infty} k_{i}(Q)=\tilde{A_{y}} \tilde{u}(Q, t)$,

$$
\lim _{i \rightarrow \infty} \int_{R} w(Q)\left(A_{y} k_{i}(Q)\right) d Q=\int_{R} w(Q)\left(\tilde{A}_{y}^{2} \tilde{u}(Q, t)\right) d Q \text { for every } w(Q) \in L
$$

Hence we have

$$
\begin{equation*}
\int_{R}\left(A_{\vartheta}^{q-1} U_{2 q}(P, Q)\right)\left(\tilde{A_{y}} \tilde{u}(Q, t)\right) d Q=\lim _{i \rightarrow \infty} \int_{R}\left(A_{\vartheta}^{q-1} U_{2 q}(P, Q)\right) k_{i}(Q) d Q \tag{4.5}
\end{equation*}
$$

almost everywhere in P. Also, by Green's integral theorem,

$$
\begin{aligned}
\int_{R} & \left(A_{y}^{q-1} U_{2 q}(P, Q)\right) k_{i}(Q) d Q \\
& =\lim _{\kappa \rightarrow 0} R-\{Q ; \Gamma(P, Q) \leqq \kappa\} \\
& \left.=\lim _{\kappa \rightarrow 0} \int_{y}^{q-1} U_{2 q}(P, Q)\right) k_{i}(Q) d Q \\
& -\lim _{\kappa \rightarrow 0} \Gamma(P(P, Q) \leqq \kappa\} \\
& \left.\int_{y}^{q-2} U_{2 q}(P, Q)\right)\left(A_{y} k_{i}(Q)\right) d Q \\
& =\int_{R}\left(A_{\vartheta}^{q-2} U_{2 q}(P, Q)\right)\left(A_{y}^{q-2} U_{2 q}(P, Q)\right. \\
\partial \nu & \left.k_{i}(Q)\right) d Q .
\end{aligned}
$$

The last equality may be obtained, as in the proof of (3.18), from the order relation (3.17) :

$$
A_{y}^{q-2} U_{2 q}(P, Q)=0\left(\Gamma(P, Q)^{(4-m) / 2}\right)
$$

Hence, for any $w(P) \in L$, we have

$$
\begin{aligned}
\int_{R} w(P) d P & \left\{\int_{R}\left(A_{y}^{q-1} U_{2 q}(P, Q)\right) k_{i}(Q) d Q\right\} \\
& =\int_{R} w(P) d P\left\{\int_{R}\left(A_{y}^{q-2} U_{2 q}(P, Q)\right)\left(A_{y} k_{i}(Q)\right) d Q\right\}
\end{aligned}
$$

Thus, by letting $i \rightarrow \infty$, we obtain, from (4.4), (4.5) and the Lemma 4,

$$
\int_{R}\left(A_{y}^{q-1} U_{2 q}(P, Q)\right)\left(\tilde{A}_{y} \tilde{u}(Q, t)\right) d Q=\int_{R}\left(A_{y}^{q-2} U_{2 q}(P, Q)\right)\left(\tilde{A}_{v}^{2} \tilde{u}(Q, t)\right) d Q
$$

almost everywhere in P. Repeating the process, we obtain, from (4.3),
Theorem 2. Let the dimension m be odd and $\geqq 2$, and let $2 n \geqq m$ in the definition of $U_{2 q}(P, Q)$. Then, for the initial data f and h in D, we have
$\breve{u}(P, t)=C(P)^{-1} \int_{R} U_{2 q}(P, Q)\left(\tilde{A_{y}^{q}} \tilde{u}(Q, t)\right) d Q$ almost everywhere in P in a certain vicinity of P_{0}.
Corollary. $\tilde{u}(Q, t)$ is, for fixed t, equal almost everywhere to a function $u(P, t)$ which is infinitely differentiable in P in a certain vicinity of P_{0} such that

$$
\begin{equation*}
u(P, t)=C(P)^{-1} \int_{R} U_{2 q}(P, Q)\left(\tilde{A_{\nu}^{q}} \bar{u}(Q, t)\right) d Q \tag{4.6}
\end{equation*}
$$

Proof. We see that, if $q \geqq m$,

$$
u(P, t)=C(P)^{-1} \int_{R} U_{2 q}(P, Q)\left(\tilde{A_{y}^{a}} \tilde{u}(Q, \mathrm{t})\right) d Q
$$

is, by (3.17), q times continuously differentiable in P. As q may be taken arbitrarily large, the Corollary is proved.

In the above, we have assumed that the dimention m be odd and $\geqq 2$. Let us consider the case in which m does not satisfy this condition. In such a case, let $m^{\prime}>m$ be odd and $\geqq 2$. We consider the function

$$
\hat{u}(\hat{Q}, t)=u\left(y^{1}, \ldots, y^{m}, t\right) \exp \left(-\left(y^{m+1}\right)^{2}-\ldots-\left(y^{m \prime}\right)^{2}\right)
$$

of m^{\prime} independent variables $y^{1}, \ldots, y^{m}, y^{m+1}, \ldots, y^{m \prime}$. By introducing the operator

$$
\begin{equation*}
A^{(1)}=A+\frac{\partial^{2}}{\partial\left(y^{m+1}\right)^{2}}+\ldots+\frac{\partial^{2}}{\partial\left(y^{m \prime}\right)^{2}} \tag{4.7}
\end{equation*}
$$

in place of the operator $A=A_{y}$, we see, as above, that (4.6)' holds good for $u(\hat{Q}, t)$ in this case also. Proof. $\tilde{A}^{(1) a} \hat{u}(\hat{Q}, t)$ belongs, for fixed t, to the product Hilbert space

$$
L^{a} \times L_{2}\left(-\infty<y^{m+1}<\infty, \ldots,-\infty<y^{m \prime}<\infty\right)
$$

and hence we may apply the proof of the Theorem 2 above ${ }^{4}$.
Next since $u(Q, t)$ belong to $D\left(\tilde{A}_{y}^{p}\right)$ for every $p>0$, it is easy to see, by (2.10), that

$$
\begin{equation*}
\left(\partial_{t} \partial_{t}\right)^{r} \tilde{A}_{y}^{q} u(Q, t)=\tilde{A}_{y}^{q+r} u(Q, t) \text { for every } r \geqq 0 \tag{4.8}
\end{equation*}
$$

Thus we see, by (4.6)', that $u(P, t)$ is, for fixed P, infinitely differentiable in t.

Moreover, since $u(Q, t)$ is infinitely differentiable in Q, we have

$$
\begin{equation*}
\widetilde{A_{y}^{q+r}} u(Q, t)=A_{y}^{q+r} u(Q, t) \text { almost everywhere in } Q . \tag{4.9}
\end{equation*}
$$

For, we have, by the definition (2.5) of \tilde{A},
$\int_{R} w(Q)\left(\tilde{A}_{y}^{q+r} u(Q, t)\right) d Q=\int_{R}\left(A_{y}^{q+r} w(Q)\right) u(Q, t) d Q=\int_{R} w(Q)\left(A_{y}^{q+r} u(Q, t)\right) d Q$,
when $w(Q)$ is infinitely differentiable and vanishes outside a compact set contained in the interior of R.

Therefore, in view of (2.11), we have proved finally the
Theorem 3. When f and h are in D, the function $\tilde{u}(x, t)$ given by (2.10) is (x, t)-almost everywhere equal to an infinitely differentiable function $u(x, t)$ satisfying (1.1)-(1.2).

[^0]
[^0]: 1) Cf. K. Yosida: On the integration of diffusion equations in Riemannian spaces, to appear in the Proc. Amer. Math. Soc.
 2) See K. Friedrichs: Spektraltheorie halbbeschränkter Operatoren, Math. Ann. 109 (1934), 456-487. H. Fruedenthal: Über die Friedrichssche Fortsetzung halbbeschränkter Hermitescher Operatoren, Proc. Amsterdam Acad. 39 (1936), 832-833.
 3) Suggested by M. Riesz: L’intégrale de Riemann-Liouville et le problème de Cauchy, Acta Math. 81 (1948), 1-223. Cf. L. Schwartz: Théorie des distributions, I (1950), p. 47.
 4) This argument may be called a method of descent. Cf. J. Hadamard: Le problème de Cauchy et les équations aux dérivees partielles linéaires hyperboliques, (1932), p. 287.
