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90. On Cauchy’s Problem in the Large
for Wave Equations.

By K6saku YOSlDA.
Mathematical Institute, Nagoya University.

(Comm. by Z. SUETUNA, M.J.A., Oat. 13, 1952.)

1. Introduction. Let R be a connected domain of an orientable,
m-dimensional Riemannian space with the metric ds’--g,(x)d#dx.
We consider the wave equation

(1.1) u(x,t) --Au(x,t), < t
t

with Cauchy’s data

(1.2) u(x,O)=f(x), u(x,O) =h(x).
t

Here the differential operator A=A defined by

(1.3) Af(x)=b,(x) Vf(x) a,x Vf(x)+ )-,--+ e(x)f(x)

is elliptic in the sense that the quadratic orm b’(x)$$ is )0 for
()>0. Since the value of Af(x) must be independent of the

local coordinates (x, ..., x) of the point x, the coefficients a(x)
and b(x) must be transformed, by the coordinates change x-- ,
respectively into

2(1.4) () * a(x) +.b(x) and b()= * b(x).
3x 3xx 3x x

For the sake of simplicity, we assume that g,(x), b’(x), a(x) and
e(x) are infinitely differentiable functions of the local coordinates
(x ...,

Since we are concerned with the existence in the large of the
integral o (1.1)-(1.2), it will perhaps be necessary o rely upon
operator-theoretical method). We here assume that the operaor
A is, as in the case of Laplacian, formally self-adjoint and non-
positive deftnite, viz.

(1.5) I(Af(x))h(x)dx=I/(x)(Ah(x))dx and IR(Axf(x))f(x)dxO
(dx=l/g(x) dx.., dx, g(x)--det(g(x)),

if f(x) and h(x) are twice continuously differentiable such that f(x)
vanishes outside a compact set contained in the interior o R. Then
we may integrate, by virtue of the Hilbert space technique, an
operator-theoretical variant of (1.1)-(1.2) It will next be shown,
by a parametrix consideration, that this olerator-theoretical integral
is, for sufficiently smooth initial data (1.2), equivalent to the ordi-
nary integral o2 the genuine differential equation (1.1)-(1.2). It is
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to he noted that the Lemma 2 below, which is of the type of Pois-
son’s equation, may be of use in other problems relating to the
elliptic differential operator.

2. An operator-theoretical integration. Let L be the linear
space of twice continuously differentiable real-valued functions f(x)
vanishing outside compact set and satisfying a certain linear bound-
ary condition on the boundary 3R of R. It is assumed that the
boundary condition is chosen in such a way that we have

(2.1) I(Af(x))h(x)dx=!,f(x)(Afl(x))dx and

(2.2) l(Af(x))f(x)dxO or f, hL.,

Such boundary condition is possible because of the assumption (1.5).
L is a pre-Hilbert space by the norm

(2.3) Ilf ll=(If(x)dx),,=(f f),,

such that the completion L o this linear normed space L is a real
Hilbert space L(R).

We consider A=A to be an additive operator defined on LL
into L. Let A be a non-positive definite self-adjoint extension of

A. Such A may be defined as 2ollows)- Let L’ be the completion
of the linear space L by the new metric

(2.4) ]If ]l’ ((- Af, f) + (f, f)).
Because oi (2.2), we may identify L’ with a linear subspace of L%
Then

(2.5) A is the contraction o2 the adjoint operator A* of A restricted

to the domain D(A)=L’/D(A*), where D(A*) is the domain of A*.
We have, by (2.1),

(2.6) LD(A)

Let (2.7)" A--- ,dE()

be the spectral resolution of - and let

(2.8) (-- A)1/- 2dE(,t)

be the positive square root of the operator -. Surely we have

(2.9) the domain D((--A)ll’) of. (-A)D(A), and hence, by (2.6),

(2.6)’ LD(A)D((A))
Let us consider, ior f and heL,

(2.10) (x, t)---(cos (- A)t)f(x) + (sin ((- A)llt)/( A))h(x)

----I:cos (2",)dE(,t)f(x)-t-I:(sin
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The convergence of the right hand integral is clear. We see, by (2.6)’,
that (x, t) satisfies the operator-theoretical differential equation

(2.11) 3tOtu(x, t)---At(x, t), where
O(x, t)- strong lira -((x, t + )-(x, t)).

6-,0

We have also (2.12)" t(x, O)=f(x), Ot(x, O)=h(x)
Therefore we have"

Theovem 1. (2.10) is an operator-theoretical solution of Stokes’
type of the operator-theoretical variant (2.11)-(2.12) of (1.1)-(1.2).

Let D be the subset of L consisting of all the infinitely dif-

ferentiable functions f(x) such that f(x)e the domain D(A]) of the

operator A, for every q>0. Such is the case for infinitely dif-
ferentiable function f(x) when f(x) vanishes outside a compact set
contained in the interior of R. From the definition (2.10) and (2.6)’,
we see that (2.13)" if f and h are both in D, the function fi(x, t) given

by (2.10) is in the domain D(A2) for any q>0. We will show, in 4,
that such (x, t) is equal (x, t)-almost everywhere to a function u(x, t)
which is infinitely differentiable in (x, t), so that u(x, t) is an ordi-
nary integral of the genuine differential equation (1.1)-(1.2).

3. The parametrix for the iterated elliptic operator. The
hypothesis of the formal self-adjointness of the operator A=A is
not needed in this . Thus let

(3.1) A’f(x) -b(x) f + d (x) f
3x3x----- Ox

+ p(x)f(x)

be the formally adjoint operator oi A,. We will construct a para-
metrix for the iterated elliptic operator (3.2)" A-. To this purpose,
let F(P, Q)---r(P, Q) be the square of the smallest distance between
the two points P-----(x’, ..., x’) and Q---(x, ..., x) of R according to
the new metric (3.3)" dr----b(x)dxdx, where (b(x))--(b(x)) -.
We have then"

Lemma 1). Let the dimension m be odd. For any positive
integer n and for any even a_O, we may construct a parametrix
W(P, Q) for the operator A’--A’"

(3.4) W(P, Q)-- F(P, Q)(+-)V(P, Q)/K(a)L(c+ 2k),
k--O

where K(a)=2F(a/2), L,(a+ 2k)=2(/)F((a+ 2k+ 2--m)/2)
and V(P, Q) are infinitely differentiable in the vicinity of Q=P and
V(P, P)--I
so that (3.5)" A’W/(P, Q) =W(P, Q)

+F(P,Q)(++’-)’ p 2)L(a 2 2n)).
Proof. We introduce the normal coordinates y of Q--(x, ..., x)

in the vicinity of P"
(3.6) y=(F(P, Q))"( dx)
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Let (3.7): dr=fl(y)dy*dy.
We have the well-known formulae

(3.8) F(P, Q) fl(O)yy, fl(y)y-fl,(O)y.
By virtue of (3.8), the operator

(3.9)

((fl(y)) (fl,(y)) -),
when apNied to the function of the form f(F(P, Q), y), may be writ-
ten as follows:

The difierentiation in A and in N(f) are to be performed as if F
and y are independent variables. Hence, by

(3.11) a/K(a+2)=l/K(a), (a+2-m)/L(a+2)=l/L(a),
F(P,we obtain AW+(P, Q)= o K(a+ 2)L(a+ 2k)

3y

K(a+ 2)L(a + 2 + 2n)

AV,,
K(a+ 2)L(a+ 2+ 2n)

if V(P, Q) may be so determined that V(P, Q) are infinitely dif-
ferentiable in the vicinity of Q=P, V_(P, Q)O, Vo(P, P)=l and

(3 12) 2y 3V M+(+2k--m) V(P, Q)+ A;V_(P, Q)

=o, (k=o, , ..., n).
Such V(P, Q) exist by virtue of the order relation

(a.la) M=2m+O(y).
Proof. By putting y=r, (3.12)is reduced to the ordinary

differential equation in r containing the parameters -(3.2)’ 2r dV(P, r) Mr)dr
+ ( + 2k-m) V(P, r)= AV_(P, r).

Hence, by V_(P, Q)0 and Vo(P, P)=I, we obtain

M_m)dt(.4) vo= exp (- (2t)- (

Corollary.
(3.15) Aq-W.q(P, Q)=W(P, Q)/O(F(P, Q)(/+’-)),

A?Wq(P, Q)=O(F(P, Q)(/-)) for P==Q.
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Next let Po be any inner point of R and consider, for sufficient-
ly small e 0,

(3.16) U(P, Q)=W(P, Q)3(F(P, Q))(T’(Po, P)), where (x) is in-
finitely differentiable in x0 such that 3(x)--1 or 0 according as
x or x2.
Thus, in a certain vicinity of P0,

(3.17) A’q-U,,(P, Q)-- U,,.,(P, Q) + O(F(P,
A’qU,(P, Q)=0(F(P, Q)(/’-")) for P=t=Q.

After these preliminaries, we may prove an analogue of Pois-
son’s equation, viz.

Lemma 2. Let the dimension m be odd andS2, and let k(Q)
be L. Then we have, for 2n m,

(3.18) C(P)k(P)-- I R(A’vq-U"(P’ Q))(A.,k(Q))dQ, where C(P) is in-

finitely differentiable and =t:0 in a certain vicinity of Po.
Proof. We have, by Green’s integral theorem and (3.17),

,(A’-
U,(P, Q)(Alc(Q))dQ

lim (A’q-U,,,(P, Q))(Ak(Q))dQ
-.o R-{Q;F(P, Q)}

(’(’q-Uq(P, Q))k(Q)dQlim I
,,-o R-{Q;F(P, Q)_.:}

+ lim I A-U.,q(P, Q) k(Q) (A-U.q(P Q)). dS
-,0/,(p, Q)= ?

where is the transversal direction defined by

(3.19) --(1/g(y) fl(y) cos (, y))-* (i--1, 2 m)y ...,

and dS is the hypersurface element on F(P, Q)=.
We have, from (3.17),
A’qUq(P, Q)=O(F(P, Q)(’+-)’) for P=}=Q,
A’-U,.(P, Q)= (4F((4-m)/2))-F(P, Q)(’-)’+ O(F(P, Q)("/-)/).

Hence we have, when F(P, Q)= tends to zero

VA’-U,(P, Q) (8F((4_m)/2)_x(2_m)F_, F ./g(y).fl,(y)cos(r,

=(4F(a--m)/2)-(2-m)F-/fl(O)yVgfl(y) cos (r, y) (by (3.8))
=(4F((4--m)/2)-(2--m)yF-l/g(y) cos (r, y) (by (3.8))

=(4F((4-m)/2)-(2--m)F(-)l/g-- Z (]) (by putting

we have I,(AT-U,(P, Q)(A,k(Q))dQTherefore

lim (4F((4-m)/2)-1(2-m)-)/l/g(1/) ()dS

=(4F(4--m)/2)-(2--m)l/g(P) I Z (;)dS,.

This proves (3.16).
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4. The differentiability of the operator-theoretical solution
(Q, t). We first remark that we are dealing with the case A’=A.
We will prepare two lemmas.

Lemma 3. For fixed t, there exists a sequence of functions
{k(Q)}..L such that

(4.1) strong lim k(Q)--t(Q, t),

lira w(Q)(A,k(Q))dQ-= w(Q)(At(Q, t))dQ ]’or every w(Q)L.
i R R

Proof. By (Q,t)eD(A) and the definition (2.5) of A, there
exists a sequence of functions {k(Q)}L such that strong lim k(Q)

=(Q, t). We have, for any w(Q)eL,

=IR(dw(V))t(q, t)dQ--IRw(Q)(,vt(V, t))dQ

by (2.1) and by the definition (2.5) of A.
Lemma 4. We have, for w(Q)L and for liq,

(4.2) IIw(P)(A-U2(P, Q))dPL.
Proof. By (3.16), we see that the integral vanishes outside a

compact coordinate neighbourhood of Po. Moreover, by (3.4), (3.15),
(3.16) and (3.17), we see that the integral is twice continuously
differentiable in Q (Q.E.D.).

We have, by (3.18),

C(P)k(P) I (A-U,(P Q))(Ak(Q))dQ
J

in a certain vicinity of Po. Let w(Q)L vanish outside this vicinity.
Letting i in

I w(P)C(P)Ic(P)dP I w(P)dPtI(A,-U,(P, Q))(A,k())dQt
we obtain, by the Lemma 3 and Lemma 4,

(4 3) 5(P, t)=C(P)- (Aq-IU,q(P Q))(At(Q, t))dQ almost every-
R

\ Y

where in P in a certain vicinity oi Po.
The unction t(Q, t) belongs to D(A$) for every p>0. Thus we
see, by the Lemma 3, that there exists a sequence of functions
{k(Q)}L such that

(4.4) stronglimk(Q)--At(Q,t),

w(Q)(Ak(Q))dQ ,w(Q)(At(Q, t))dQ for every w(Q)L.

Hence we have
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(4.5) (A-U.q(P, Q))(At(Q, t))dQ= lim (A-U,q(P, Q)) k (Q) dQ
R R

almost everywhere in P. Also, by Green’s integral theorem,

I ,(A-U.,.q(P, Q))k(Q)dQ
lim (A.-U.q(P, Q))k(Q)dQ
.o R-{Q;F(P, Q)}

lira (Aq-:Uq(P, Q))(Ak(Q))dQ
o R-{Q;F(P, Q)}

lim VAI-Uq(P’Q)k,(Q)-(AI-Uq.P,Q.)
o F(p, )=x

,(A-Uq(P, Q))(A,k,(Q))dQ.

The last equality may be obtained, as in the proof of (3.18), from
the order relation (3.17)"

Aq-U (P, Q)=O(F(P Q)(-))Y 2q

Hence, for any w(P)eL, we have

i,w(P)dP I,(A:-U(P, Q))k(Q)dQ
I,w(P)dPtI(A:-’U(P, Q))(Ak(Q))dQ}.

Thus, by letting i, we obtain, from (4.4), (4.5) and the Lemma 4,

(-u(P,)((,t))= (A-’g(P, ))((, t))

lmt everywhere in P. Reeaing he roeess, we obtain, from (4.8),
Theorem . Let the dimension m be odd and , and let n m

in the definition of Uq(P, Q). Then, for the initial data fa h in
D, we have

(4.6) (P, t)=C(P)-,Uq(P, Q)(A(Q, t))dQ almost everywhere in

P in a certain vicinity of Po.
Corollary. 5(Q, t) is, for fixed t, equal almost everywhere to a

function u(P, t)which is infinitely differentiable in P in a certain
vicinity of Po such that

(4.6)’ (P, t)C(P)- U(P, )(Ag(, t))d.

Peoof. We see h, if

(P, t)=C(P)- U(P, )(Ag(, ))d

is, by (8.17), q imes eoninuously differenible in P.
ken rbirrily large, he Corollary is

In he bove, we hve ssumed ht the dimention m be odd
nd . e us consider he ese in which m does not satisfy
his condition. In such a ese, le m’>m be odd nd . We
eoider he funeion
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((, t)-----u(y1, ..., y, t) exp (--(y/l),._...- (y,))
of m’ independent variables y,..., y, y/l,..., y,. By introduc-
ing the operator

(4.7) A)-A+ +... +
in place of the operator A=A, we see, as above, that (4.6)’ holds

good for u(, t) in this case also. Proof. ()q(, t) belongs, for
fixed t, to the product Hilbert sace

L L(_<y+,...,- <y’<)
and hence we may apply the proof of the Theorem 2 above).

Next since u(Q, t) belong to D(A$) for every p0, it is easy
to see, by (2.10), that

q+r(4.8) (OtOt) Au(Q,t) A u(Q, t) for every r0
Thus we see, by (4.6)’, that u(P, t) is, for fixed P, infinitely dif-
ferentiable in t.

Moreover, since u(Q, t) is infinitely differentiable in Q, we have

(4.9) A+ru(Q, t)=A+u(Q, t) almost everywhere in Q.

For, we have, by the definition (2.5) of ,
when () is infinitely differeniable and vanishes outside a eomae
se eontained in he inerior of R.

herefore, in view of (.11), we have roved finally
Teoeem . Whe f d h aee i D, he feio (,

b (.10) i (, t)-almoot everywhere equal o a iNitel
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