No. 4] 151

37. On the Jordan-Hölder-Schreier Theorem

By Tsuyoshi Fujiwara and Kentaro Murata Department of Mathematics, Yamaguchi University (Comm. by Z. Suetuna, M.J.A., April 13, 1953)

In this note we shall formulate the Jordan-Hölder-Schreier Theorem for groups in any lattice. This formulation is the extension of the usual Jordan-Hölder-Schreier Theorem for modular lattices, and of the Jordan-Hölder Theorem for composition series of lower semi-modular lattices.

Let L be a lattice. In the following we denote the elements of L by small latters a, b, x, y, m, n, \cdots . By m/n we mean the closed interval $\{x; m \ge x \ge n, x \in L\}$, and by m/n the principal ideal generated by m in L.

Definition 1. An element $a \in m/n$ is called m/n-modular if and only if

- 1) $x, y \in m/n, x \ge a$ implies $(x \land y) \lor a = x \land (y \lor a)$ and
- 2) $x, y \in m/n, x \ge y$ implies $(x \cap a) \cup y = x \cap (a \cup y)$.

Remark. Putting m-modular in place of m/n-modular in this definition, we can argue similarly in the following arguments.

Theorem 1. If $a, b \in m/n$ and a is m/n-modular, then the correspondences $x \to x \frown b$ and $y \to y \smile a$ are inverse isomorphisms between $a \smile b/a$ and $b/a \frown b$.

Proof. This theorem is immediate from the above definition.

Theorem 2. If a is m/n-modular and $b \in m/n$, then $a \cap b$ is b/n-modular.

Proof. (i) If
$$x, y \in b/n$$
 and $x \ge a \land b$ then
$$(x \land y) \lor (a \land b)$$

$$= [(x \land y) \lor a] \land b$$

$$= \{[(a \lor x) \land b \land y] \lor a\} \land b$$

$$= (a \lor x) \land [(b \land y) \lor a] \land b$$

$$\ge x \land (y \lor a) \land b$$

$$= x \land [y \lor (a \land b)]$$

$$\ge (x \land y) \lor (a \land b).$$
(applying Theorem 1)
$$\ge (x \land y) \lor (a \land b).$$

Hence we have

$$(x \land y) \lor (a \land b) = x \land [y \lor (a \land b)]$$
(ii) If $x, y \in b/n$ and $x \ge y$, then we have
$$x \land [(a \land b) \lor y]$$

$$= x \land [b \land (a \lor y)]$$

$$= x \land (a \lor y)$$

$$= (x \land a) \lor y$$

$$= [x \land (a \land b)] \lor y.$$

This complete the proof.

Theorem 3. Let $n \le a \le b \le m$. If a is m/n-modular and b m/a-modular then b is m/n-modular.

Proof. (i) If $x, y \in m/n$ and $x \ge b$, then we have

$$x \cap (y \cup b)$$

$$= [(a \cup y) \cap x \cap (y \cup b)] \cup b \qquad \text{(applying Theorem 1)}$$

$$= [(a \cup y) \cap x] \cup b$$

$$= [a \cup (y \cap x)] \cup b$$

$$= (x \cap y) \cup b.$$

(ii) If $x, y \in m/n$ and $x \ge y$, then we have $x \cap (b \cup y)$

$$= (x \cup a) \land (b \cup y \cup a) \land x$$

$$= \{[(x \cup a) \land b] \cup (y \cup a)\} \land x$$

$$= [a \cup (x \land b) \cup (y \cup a)] \land x$$

$$= [a \cup (x \land b) \cup y] \land x$$

$$= (x \land b) \cup y.$$

(applying Theorem 1)

This complete the proof.

Theorem 4. Let a be m/n-modular and $b \in m/n$.

- 1) If $x \in a \cup b/a$ and $a \cup b/n$ -modular then $x \cap b$ is b/n-modular.
- 2) If $y \in b/a \cap b$ and b/n-modular then $y \cup a$ is $a \cup b/n$ -modular.

Proof. This theorem is immediate from the above three theorems.

Theorem 5. If a, b are m/n-modular, then $a \smile b$ is m/n-modular.

Proof. (i) If $x, y \in m/b$ and $x \ge a \smile b$, then we have

$$(x \cap y) \cup (a \cup b)$$

$$= [x \cap (y \cup a)] \cup b$$

$$= x \cap [y \cup (a \cup b)].$$

(ii) If $x, y \in m/b$ and $x \ge y$, then

$$[x \smallfrown (a \lor b)] \lor y$$

$$\geq (x \smallfrown a) \lor y$$

$$= x \smallfrown (a \lor y)$$

$$= x \smallfrown [(a \lor b) \lor y]$$

$$\geq [x \smallfrown (a \lor b)] \lor y.$$

i.e. $[x \land (a \lor b)] \lor y = x \land [(a \lor b) \lor y]$.

Hence $a \smile b$ is m/b-modular. Using Theorem 3, we conclude the m/n-modularity of $a \smile b$.

Definition 2. Let $m=a_0>a_1>\cdots>a_r=n\geq n_0$ be a chain such that a_i is a_{i-1}/n_i -modular $(i=1, \dots, r)$. We call such a chain a m/n-modular chain on n_0 .

Theorem 6. (Schreier's Theorem). Let

$$m=a_0>a_1>\cdots>a_r=n \ge n_0$$

 $m=b_0>b_1>\cdots>b_s=n \ge n_0$

and

be any two finite m/n-modular chains on n_0 , then these modular chains can be refined by interpolation of terms $a_{i,j} = a_{i+1} \cup (a_i \cap b_j)$ and $b_{i,j} = a_{i+1} \cup (a_i \cap b_j)$

 $b_{j+1} \cup (a_i \cap b_j)$ so that corresponding intervals $a_{i,j}/a_{i,j+1}$ and $b_{i,j}/b_{i+1,j}$ are projective and isomorphic.

Proof. (i) Proof of refinement:

 a_{i+1} is a_i/n_0 -modular. Hence by Theorem 1 we have

$$(1) a_{i,j}/a_{i+1} \cong a_i \smallfrown b_j/a_{i+1} \smallfrown b_j.$$

Moreover, using Theorem 2 we have that $a_{i+1} \cap b_j$ is $a_i \cap b_j/n_0$ -modular. Similarly $a_i \cap b_{j+1}$ is $a_i \cap b_j/n_0$ -modular. Hence applying Theorem 5, we have that:

(2)
$$(a_{i+1} \smallfrown b_j) \smile (a_i \smallfrown b_{j+1}) \text{ is } a_i \smallfrown b_j/n_0\text{-modular.}$$

Since

(3)
$$a_{i+1} \smile (a_{i+1} \cap b_j) \smile (a_i \cap b_{j+1}) = a_{i+1} \smile (a_i \cap b_{j+1}) = a_{i,j+1}$$
, applying (1), (2) and Theorem 4, we have that $a_{i,j+1}$ is $a_{i,j}/n_0$ -modular. Similarly $b_{i+1,j}$ is $b_{i,j}/n_0$ -modular.

(ii) Proof of projectivity and isomorphism:

Applying (1), (3) and Theorem 1, we get

$$a_{i,j}/a_{i,j+1} \cong a_i \smallfrown b_j/(a_i \smallfrown b_{j+1}) \smile (a_{i+1} \smallfrown b_j)$$
.

Similarly

$$b_{i,j}/b_{i+1,j} \cong a_i \smallfrown b_j/(a_i \smallfrown b_{j+1}) \smile (a_{i+1} \smallfrown b_j)$$
.

Hence

 $a_{i,j}/a_{i,j+1}$ and $b_{i,j}/b_{i+1,j}$ are projective and isomorphic.

This complete the proof.

Remark 1. If there exists an unrefined m/n-modular chain on n_0 , then we get the Jordan-Hölder Theorem.

Remark 2. Let L be a modular lattice. Then Theorem 6 is the usual Schreier's Theorem for L.

Remark 3. Let L be a lattice with the following condition: If $x \smile y$ covers x and y, then $x \frown y$ is covered by x and y. Then we get the Jordan-Hölder Theorem for any finite dimensional interval m/n.

Because, if $x, y \in m/n$ and x covers y then y is x/n-modular, therefore, this is immediate by Theorem 6.

Hence, if L is lower semi-modular, then the Jordan-Hölder Theorem for L is a special case of this remark.