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108. Structure of a Riemann Space

By Tominosuke OTSUKI
Department of Mathematics, Okayama University
(Comm. by Z. SUETUNA, M.J.A., Nov. 12, 1953)

Let V. be an n-dimensional Riemann space with positive def-

inite line element
ds’ = gy (@) datda’ (2,7=1,2,...,n)
in each of its coordinate neighborhoods. Let I'j, be the Christoffel
symbols of the second kind made by g,;.
Riy=210 _ 305 _ pmpe 4 pops,,
dx”  axt ™
th = R;hk) R=g" R

are the components of the Riemann-Christoffel tensor, the Ricci
tensor and the scalar curvature of the space.

In a previous paper®, the author has investigated the spaces
whose Ricci tensors satisfy the conditions
(a) RR.=-1_REH,

n—1

( b) R{ ' b = 0
where a comma ‘“,’’ denotes the covariant differentiation of the
spaces. The first of these conditions is analogous to the condition
for Einstein spaces, i.e.

Ri=_L RS (i=1or0, asi=jor iy
n

which is equivalent to the condition
R:R, = —71;— RE.

In connection with Theorem 4 in the paper above, we shall
prove a more precise theorem as follows:

Theorem. If a Riemann space satisfies the conditions (a), (b),
then it is an Einstein space with zero scalar curvature or a product

space with an Einstein space (a surface of comstant curvature) and
a stratght line.

Proof. Let us put
(1) Wy =Ry —

n__.
Then we have

W=gWy=R—_" R=-_1_Rg,
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hence
(2) Ry=Wy— Wgy.
Since we have by (2)
RER, = (Wi-W8) (Wi—W&)=WiWi,-2WWi+ WWsl,

11 RREi=— WWi+WWsi,
n——

the condition (a) becomes

(a’) WEWi =W Wi,

At any point, if we take a suitable rectangular frame, we
may put
W 0
(W) =
0 W,
Then (a') becomes
(w)' = (jE'wJ)wu t=12,...,m.
If wiyeioyWn=0, Wni1,...,w.==0, we have
Winpy = ¢+ + =W, = jij,

hence m=n—1. It follows that if W0, there exists a unit
vector v,(x) such that
(3) Wy= Wo,v;.

Now, we get from (b) R,,=0, i.e. R is a constant, hence W
is also a constant. Accordingly (b) may be replaced by the condition
(b" Wi,e=0.

We get from (3), (b')
Vir Vs + VU5, =0.
On the other hand, since v; is a unit vector, we have
Vi k’l)t =0.
Hence we get from the two relations above
(4) Viy; =0,
Therefore, there exists a scalar y(x) such that
(5) v, = dylaa’.

Making use of orthogonal trajectories of the family of the
hypersurfaces on which y(x) is constant, we can choose a co-
ordinate system &%, ..., 2", y such that

Oalz,y) =0, 2=1,2,...,n—1.
Then by (5) we have (v,)=(0,0,...,1) in the coordinate system,
it follows that 1 = ¢g¥ v, v; = g™ (, ) and gm.(x,y)=1.
Furthermore, we have
Viyy=—lhu=—-T%=0,
hence

Iy =TIy = "“%“‘a“agf‘=0’ Her=12,...,n—1.
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Accordingly g, (%, y) is independent on y, the line element of the
space is of the form
ds® = g,,(x) da* dx* + dy dy ,»
which shows that the space is a -product of an (n—1)-dimensional
Riemann space V,., with line element ds®= g,,(x)dx*d2* and a
straight line.
On the other hand, since I'y =I'i; =0, we have
Riw=R$tu=‘a‘IE& - ﬂl‘ I+ r5re,=0,
Yy dx*
hence we get easily
Rluvo = -Rlv.w ’ R).v. = Rlu ’ E=R

where R0, R, and R are the components of the Riemann-
Christoffel tensor, the Ricei tensor and the scalar curvature of the
space V,.;. Accordingly, in the coordinates &', ..., 2"%, y, we have

R 0
(R = ) .
0 0
(a) becomes
1

n—1

R

>

R = RE}.

=

R&,ie. V., is an Einstein space

It follows that RY =
n-——

with the same constant scalar curvature as V,.

Finally, if W=0, we get easily Wi=0, hence by (2) R;=0.
V. is an Einstein space with zero scalar curvature. The proof is
complete.

2) In the following, we assume that l,n:v,atake the values ]; 2, ,m—1.



