13. On Rings of Continuous Functions and the Dimension of Metric Spaces

By Jun-iti NAGATA

Osaka City University and University of Washington (Comm. by K. KUNUGI, M.J.A., Jan. 12, 1960)

M. Katětov [1] has once established an interesting theory on a relation between the inductive (Menger-Urysohn) dimension of a compact space R and the structure of the ring of all continuous functions on R. The purpose of this brief note is to give a slight extension to Katětov's theory for a metric space while simplifying his discussion.

According to [1], we consider an analytical ring, i.e. a commutative topological ring with a unit e and a continuous real scalar multiplication. A subring C_1 of an analytical ring C is called analytically closed if

(1) $\lambda e \in C_1$ for any real λ , (2) $x \in C_1$ whenever $x \in C$, $x^n + a_1 x^{n-1} + \cdots + a_n = 0$, $a_i \in C_1$, (3) $\overline{C}_1 = C_1$.

Let C' be a subset of C; then a subset M of C is called an analytical base of C' in C if there exists no analytically closed subring $C_1 \oplus C'$ containing M. The least number of an analytical base of C' in C is called the analytical dimension of C' in C and denoted by dim (C', C). The ring C(R) of all bounded real-valued continuous functions of R is an analytical ring as for its strong topology. We denote by U(R) the subset of C(R) consisting of all uniformly continuous functions. Furthermore, according to [2], we call a continuous mapping f of a metric space R into a metric space S uniformly 0-dimensional if for any $\varepsilon > 0$ there exists $\eta > 0$ such that $\delta(U) < \varepsilon$ whenever $U \subset R$, diam $f(U) < \eta$, where $\delta(U) < \varepsilon$ means the fact that there exists an open covering \mathfrak{B} of U such that mesh $\mathfrak{B} = \sup \{ \operatorname{diam} V | V \in \mathfrak{B} \} < \varepsilon$ and order $\mathfrak{B} \leq 1$. The covering dimension of R or the strong inductive dimension of R as the same is denoted by dim R. Now we can prove the following

Theorem. dim $R = \dim (U(R), C(R))$ for every locally compact, metric space R.

To establish this theorem we prove some lemmas.

Lemma 1. Let $f(x)=(f_1(x),\dots,f_n(x))$ be a uniformly 0-dimensional, bounded mapping of a metric space R into the n-dimensional Euclidean space E_n . Let C_1 be an analytically closed subring of C(R) containing f_1,\dots,f_n ; then for every sets F and G of R with distance (F,G)=d(F,G)>0, there exists $g\in C_1$ such that $g(F)\geq 1$, g(G)=0, where $g(F)\geq 1$, for example, means that $g(x)\geq 1$ for every $x\in F$.

J. NAGATA

Proof. Let $d(F,G) = \varepsilon > 0$ and take $\eta > 0$ such that diam $f(U) < \eta$ for $U \subseteq R$ implies $\delta(U) < \varepsilon$. Choosing $\xi > 0$ such that diam $\prod_{i=1}^{n} (r_i - 2\xi, r_i + 2\xi) < \eta$ for every r_i , we cover f(R) with finitely many cubes

$$egin{aligned} &I_k\!=\!\prod_{i=1}^n \left[r_{ki}\!-\!\xi,\;r_{ki}\!+\!\xi
ight], \quad k\!=\!1,\cdots,l. \ &U_k\!=\!f^{-1}\!(I_k),\; V_k\!=\!f^{-1}\!(J_k), \ &J_k\!=\!\prod_i^n \left(r_{ki}\!-\!2\xi,\;r_{ki}\!+\!2\xi
ight). \end{aligned}$$

Let where

It easily follows from $f_i \in C_1$ that $f_{ki} = (2\xi - |f_i - r_{ki}|) \frac{1}{\xi} \in C_1$, and hence $\bar{f}_k = \prod_{i=1}^n f_{ki} \in C_1$. Then

Since diam $f(V_k) = \text{diam } J_k < \eta$, we can find an open covering \mathfrak{B}_k of V_k with mesh $\mathfrak{B}_k < \varepsilon$, order $\mathfrak{B}_k \leq 1$. It is easy to see that $S(F, \mathfrak{B}_k) = W_k$ is an open closed set of V_k satisfying $W_k \cap G = \phi$, $W_k \supset F \cap V_k$. Now we define a function g_k by

$$g_k(x) = \overline{f}_k(x), \quad x \in W_k,$$

 $g_k(x) = 0, \qquad x \notin W_k.$

Then since g_k clearly satisfies $g_k \in C(R)$ and $g_k^3 - \overline{f}_k g_k = 0$ for $\overline{f}_k \in C_1$, we get $g_k \in C_1$ satisfying $g_k(F \cap U_k) \ge 1$, $g_k(G) = 0$, $g_k \ge 0$. Letting $g = \sum_{k=1}^{l} g_k$ we have an element g of C_1 satisfying $g(F) \ge 1$, g(G) = 0, $g \ge 0$.

Lemma 2. dim $R \ge \dim (U(R), C(R))$ for every metric space R.

Proof. If dim $R \leq n$, then by [2] there exists a uniformly 0dimensional, bounded mapping $f(x) = (f_1(x), \dots, f_n(x))$ of R into E_n . Hence any analytically closed subring C_1 of C(R) containing f_1, \dots, f_n also contains, for every disjoint closed sets F and G with d(F, G) > 0, $\varphi \in C_1$ such that $\varphi(F) = 0$, $\varphi(G) \geq 1$ by Lemma 2. Hence by an analogous theorem to that of E. Hewitt [3, Theorem 1], we get, for every $\overline{\varphi} \in U(R)$ and $\varepsilon > 0$ a polynomial $P(\varphi_1, \dots, \varphi_k)$ in $\varphi_i \in C_1$, $i=1,\dots, k$ such that $|\overline{\varphi} - P(\varphi_1, \dots, \varphi_n)| < \varepsilon$. Therefore $\overline{\varphi} \in \overline{C_1} = C_1$, which implies $C_1 \supseteq U(R)$. Thus (f_1, \dots, f_n) is an analytical base of U(R) in C(R), i.e. dim $(U(R), C(R)) \leq n$.

Lemma 3. dim $R \leq \dim (U(R), C(R))$ for every locally compact, metric space R.

Proof. Let (f_1, \dots, f_n) be an analytical base of U(R) in C(R); then $f(x) = (f_1(x), \dots, f_n(x))$ is a bounded continuous mapping of R onto a subset f(R) of E_n . Since R is locally compact, there is a locally finite closed covering $\{R_{\alpha} \mid \alpha \in \Omega\}$ consisting of compact sets R_{α} . Let \mathbb{I} be any finite open covering of R_{α} ; then there exists, for every $q \in f(R)$, a nbd (=neighborhood) V(q) of q in f(R) such that $\delta(f^{-1}V(q)) \leq \mathfrak{l}\mathfrak{l}$, i.e. there exists an open covering \mathfrak{V} of $f^{-1}V(q)$ satisfying $\mathfrak{V} < \mathfrak{l}\mathfrak{l}$ in R_{α} and order $\mathfrak{V} \leq 1$. It is enough to prove this proposition just for every binary open covering $\mathfrak{l}\mathfrak{l}$ of R_{α} . For we can find, for every finite open covering $\mathfrak{l}\mathfrak{l}$ of R_{α} , binary open coverings $\mathfrak{l}_1, \dots, \mathfrak{l}_k$ of R_{α} satisfying $\mathfrak{l}_1 \wedge \dots \wedge \mathfrak{l}_k < \mathfrak{l}$. Then $\delta(f^{-1}V_i(q)) \leq \mathfrak{l}_i$, $i=1,\dots,k$ for nbds $V_i(q)$, i=1, \dots, k of q imply $\delta(f^{-1} \wedge V_i(q)) \leq \mathfrak{l}$. Now assume the contrary, i.e. let F and G be disjoint closed sets of R_{α} such that $\delta(f^{-1}V(q)) \leq \{F^c, G^c\}$ for every nbd V(q) of q.

Let $D = \{g \mid g \in C(R), \text{ for every } \varepsilon > 0, \text{ there exist a nbd } V(q) \text{ of } q \text{ in } f(R) \text{ and an open covering } \mathbb{l} \text{ of } f^{-1}V(q) \text{ such that mesh } g(\mathbb{l}) < \varepsilon \text{ and } order } \mathbb{l} \leq 1\}$, where $g(\mathbb{l})$ denotes the covering $\{g(U) \mid U \in \mathbb{l}\}$ then D is an analytically closed subring containing f_1, \dots, f_n . Let us just show that $g \in D$ whenever $g \in C(R)$, $g^n + a_1 g^{n-1} + \dots + a_n = 0$, $a_i \in D$, where this n is not related with the number of f_i . Let us denote by $g_k(b_1, \dots, b_n)$, $k=1, 2, \dots, n$ the n roots of the equation

$$y^n + b_1 y^{n-1} + \cdots + b_n = 0.$$

Let $|a_i| \leq K$, $i=1, \dots, n$; then since $g_k(b_1, \dots, b_n)$ are continuous functions of b_1, \dots, b_n and accordingly are uniformly continuous for $|b_i| \leq K$, $i=1,\dots, n$, for any $\varepsilon > 0$ we can find $\delta > 0$ such that

 $egin{aligned} |b_i-b_i'| &< \delta, \ |b_i| \leq K, \ |b_i'| \leq K, \ i=1,\cdots,n \ ext{ imply} \ |g_k(b_1,\cdots,b_n)-g_k(b_1',\cdots,b_n')| &< rac{arepsilon}{n}, \ k=1,\cdots,n. \end{aligned}$

Now let V(q) be a nbd of q and $\mathfrak{U} = \{U_r | r \in \Gamma\}$ an open covering of $f^{-1}V(q)$ such that mesh $a_i(\mathfrak{U}) < \delta$, $i=1,\cdots,n$ and order $\mathfrak{U} \leq 1$. Moreover, let

$$\{x \mid g_k(a_1(x), \cdots, a_n(x)) - g(x) = 0, \ x \in U_r\} = U_{kr}, \{U_{kr} \mid k = 1, \cdots, n\} = \mathfrak{U}_r, \{S^n(U_{kr}, \mathfrak{U}_r) \mid U_{kr} \in \mathfrak{U}_r\} = \mathfrak{V}_r.$$

Then \mathfrak{B}_r is an open covering of U_r with order $\mathfrak{B}_r \leq 1$ and mesh $g(\mathfrak{B}_r) < \varepsilon$; hence $\mathfrak{B} = \bigcup \{\mathfrak{B}_r | \gamma \in \Gamma\}$ is an open covering of $f^{-1}V(q)$ with order $\mathfrak{B} \leq 1$ and mesh $g(\mathfrak{B}) < \varepsilon$. Thus we get $g \in D$. Since R_a is compact, it must be d(F,G) > 0, and hence there exists a function $h \in U(R)$ such that h(F)=0, h(G)=1. However, from the assumption D does not contain such a function h, which contradicts the fact that (f_1, \dots, f_n) is an analytical base of U(R) in C(R). Hence for every finite open covering \mathfrak{U} of R_a and for every point q of f(R) there exists a nbd V(q) of q satisfying $\delta(f^{-1}V(q)) \leq \mathfrak{U}$. Take an open refinement $\mathfrak{B} = \{V_r | \gamma \in \Gamma\}$ of $\{V(q) | q \in f(R)\}$ with order $\mathfrak{B} \leq n+1$. Then since $\delta(f^{-1}(V_r)) \leq \mathfrak{B}$, we can find an open covering \mathfrak{W}_r of $f^{-1}(V_r)$ satisfying $\mathfrak{W}_r < \mathfrak{U}$, order $\mathfrak{W}_r \leq 1$. Now $\mathfrak{W} = \bigcup \{\mathfrak{W}_r | \gamma \in \Gamma\}$ restricted in R_a is an open refinement of \mathfrak{U} with order $\mathfrak{W} \leq n+1$. Therefore we can conclude dim $R_a \leq n$. Hence, by

use of the sum-theorem, we get dim $R \leq n$.

Combining Lemma 3 with Lemma 2, we can conclude the validity of the theorem.

Incidentally, let us show the following

Corollary. U(R) of every metric space R has an analytical base in C(R) consisting of countably many elements.

While checking up the proofs of Lemmas 1, 2, we know that this corollary is a direct consequence of the following

Lemma 4. Every metric space R can be mapped into the Hilbert cube I_w by a uniformly 0-dimensional mapping.

Proof. Since, by [4], every metric space R can be imbedded in a product of countably many one-dimensional metric spaces, we can conclude this lemma from the fact owing to [2] that every one-dimensional metric space is mapped into E_1 by a uniformly 0-dimensional, bounded function.

References

- M. Katětov: On rings of continuous functions and the dimension of compact spaces, Časopis pro pěstování matematiky a fysiky, 75, 1-16 (1950).
- [2] —: On the dimension of non-separable spaces I, Czechoslovak Mathematical Jour., 2 (77), 333-368 (1952).
- [3] E. Hewitt: Certain generalization of the Weierstrass approximation theorem, Duke Math. Jour., 14, 419-427 (1947).
- [4] J. Nagata: On imbedding a metric space in a product of one-dimensional spaces, Proc. Japan Acad., 33, 445-449 (1957).