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13. On Rings of Continuous Functions and the Dimension
of Metric Spaces

By Jun-iti NAGATA
Osaka City University and University of Washington

(Comm. by K. KUNUGI, M.J.A., Jan. 12, 1960)

M. Kat6tov 1 has once established an interesting theory on a
relation between the inductive (Menger-Urysohn) dimension of a com-
pact space R and the structure of the ring of all continuous functions
on R. The purpose of this brief note is to give a slight extension to
Kat6tov’s theory for a metric space while simplifying his discussion.

According to 1], we consider an analytical ring, i.e. a commuta-
tive topological ring with a unit e and a continuous real scalar multi-
plication. A subring C, of an analytical ring C is called analytically
closed if
(1) eC for any real , (2) xeC1 whenever xeC, x+ax-+...
+a-0, aieC, (3) C-C.
Let C’ be a subset of C; then a subset M of C is called an analytical
base of C’ in C if there exists no analytically closed subring C C’
containing M. The least number of an analytical base of C’ in C is
called the analytical dimension of C’ in C and denoted by dim (C’, C).
The ring C(R) of all bounded real-valued continuous functions of R is
an analytical ring as for its strong topology. We denote by U(R) the
subset of C (R) consisting of all uniformly continuous functions. Further-
more, according to 2, we call a continuous mapping f of a metric
space R into a metric space S uniformly O-dimensional if for any
e >0 there exists ] >0 such that c](U)< e whenever UR, diam
f(U) < , where (U)< e means the fact that there exists an open
covering 3 of U such that mesh =sup {diam VI Ve}< e and order
31. The covering dimension of R or the strong inductive dimension
of R as the same is denoted by dimR. Now we can prove the fol-
lowing

Theorem. dim R=dim U(R), C(R)) for every locally compact,
metric space R.

To establish this theorem we prove some lemmas.
Lemma 1. Let f(x)--(f(x),...,f(x)) be a uniformly O-dimen-

sional, bounded mapping of a metric space R into the n-dimensional
Euclidean space E. Let C be an analytically closed subring of C(R)
containing fl,.., f; then for every sets F and G of R. with distance
(F, G)-d(F, G)>0, there exists gC such that g(F)l, g(G)-O, where
g(F)l, for example, means that g(x)=>l for every xe:
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Proof. Let d(F, G)-z 0 and take ; > 0 such that diam f(U)< ]

for UR implies 3(U)< s. Choosing $ 0 such that diam II (r-2,
r+2) < ] for every r, we cover f(R) with finitely many cubes

I- i Er-, r+{, k-1,...,l.

Let U=.f-(I), V =f-(J),
where J I (r-2, r/2).

=1

1It easily follows from fC that f-(2--If--rl) C, and hence

f--IfC. Then

f(x) :> 1 for every x U,
f(x)O for every xV,
f(x) -0 for every x V--V.

Since diam f(V)-diam J < ;, we can find an open covering of V
with mesh s, order 1. It is easy to see that S(F, 3)--W
is an open closed set of V satisfying WG=O, WFV. Now
we define a function g by

g(x)--f(x), x e W,
g(x)--O, x W.

Then since g clearly satisfies geC(R) and g--fg-O for feC, we

get geC satisfying g(FU)I, g(G)-O, gO. Letting g-,g
we have an element g of C satisfying g(F) 1, g(G)-O, g 0.

I.emma 2. dim Rdim (U(R), C(R)) for every metric space R.
Proof. If dim R n, then by [2 there exists a uniformly 0-

dimensional, bounded mapping f(x)-(f(x),...,f(x)) of R into E.
Hence any analytically closed subring C of C(R) containing f,..., f
also contains, for every disjoint closed sets F and G with d(F, G)>0,
eC such that (F)-0, ((G)>I by Lemma 2. Hence by an analogous
theorem to that of E. Hewitt 3, Theorem 1, we.get, for every e U(R)
and e > 0 a polynomial P(,..., (?) in (zeC, i-l,..., k such that

I--P(,.. ",(fn) < . Therefore C-C, which implies CU(R).
Thus (f,..., fn) is an analytical base of U(R) in C(R), i.e. dim (U(R),
C(R)) n.

Lemma :. dim Rdim (U(R), C(R)) for every locally compact,
metric space R.

Proof. Let (f,...,f) be an analytical base of U(R) in C(R);
then f(x)-(f(x),..., f(x))is a bounded continuous mapping of R onto
a subset f(R)of E. Since R is locally compact, there is a locally
finite closed covering {R. [ae 9} consisting of compact sets R,. Let li
be any finite open covering of R,; then there exists, for every q e f(R),
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a nbd (=neighborhood) V(q) of q in f(R) such that g(f-lV(q))lI, i.e.
there exists an open covering of fV(q) satisfying 3< lI in R and
order 1. It is enough to prove this proposition just for every
binary open covering lI of R. For we can find, for every finite open
covering 1 of R, binary open coverings 1I,...,1I of R, satisfying
lI/... lI<lI. Then (f-V(q))lt, i--l,...,k for nbds V(q), i-l,

.., k of q imply 3(f- V(q)). Now assume the contrary, i.e. let

F and G be disjoint closed sets of R such that 3(f-V(q)) {F, G}
for every nbd V(q) of q.

Let D-[g]geC(R), for every > 0, there exist a nbd V(q) of q in
f(R) and an open covering lI of f-V(q)such that mesh g(l)< e and
order [ 1}, where g(lt) denotes the covering [g(U)l UelI} then D is
an analytically closed subring containing f,..., f. Let us just show
that gD whenever geC(R), g+ag-+...+a=O, aD, where this
n is not related with the number of f. Let us denote by g(b,..., b,),
k--l, 2,..-, n the n roots of the equation

y+b y-+." +b-0.
Let [a,[K, i-l,..., n; then since g(b,..., b) are continuous functions
of b,...,b and accordingly are uniformly continuous for
i-1,...,n, for any > 0 we can find > 0 such that

[b--b[<3, [b[K, [bIK, i-1,...,n imply

]gk(bl,’’ ", bn)--gk(b,..., b)[ < _e, k-- 1,. ., n.

Now let V(q) be a nbd of q and lI--{UrlreF} an open covering of
f-V(q) such that mesh al(lI)< , i--l,..., n and order lI_l. More-
over, let

{x[g(al(x),. ., a(x))-g(x)-O, xe Ur}- Vkr,

Then r is an open covering of U with order 3 1 and mesh g()
<s; hence 3--{3rlreF} is an open covering of f-IV(q) with order
3___<1 and mesh g()< s. Thus we get g eD. Sinee R. is compact, it
must be d(F, G)>0, and hence there exists a function h e U(R) such
that h(F)--O, h(G)-l. However, from the assumption D does not
contain such a function h, which eontradiets the faet that (f,..., f)
is an analytical base of U(R)in C(R). Hence for every finite open
covering 1I of R. and for every point q of f(R) there exists a nbd V(q)
of q satisfying (f- V(q)) 11. Take an open refinement -- Vr r e F}
of {V(q)lqef(R)} with order 3___<n+1. Then since (f-(V)), we
can find an open covering r of f-(V) satisfying <lt, order
Now -’{ ire F} restricted in R. is an open refinement of 1I with
order . ___< n-t-1. Therefore we can conclude dim R n. Hence, by
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use of the sum-theorem, we get dim R n.
Combining Lemma 3 with Lemma 2, we can conclude the validity

of the theorem.
Incidentally, let us show the following
Corollary. U(R) of every metric space R has an analytical base

in C(R) consisting of countably many elements.
While checking up the proofs of Lemmas 1, 2, we know that this

corollary is a direct consequence of the following
Lemraa 4. Every metric space R can be mapped into the Hilbert

cube Iw by a uniformly O-dimensional mapping.

Proof. Since, by [4, every metric space R can be imbedded in
a product of countably many one-dimensional metric spaces, we can
conclude this lemma from the fact owing to [2 that every one-di-
mensional metric space is mapped into E by a uniformly 0-dimensional,
bounded function.
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