
402 [Vol. 88,

92. On the Equivalence of Excessive Functions and
Superharmonic Functions in the Theory of

Markov Processes. II

By Takesi WATANABE
Department of Applied Science, Kyushu University, Fukuoka

(Comm. by Z. SUETUNA, M.J.&., July 12, 1962)

1. Introduction. Let X be a strict Markov process on a locally
compact Hausdorff space.) Consider a family of admissible sub-
sets which depends on the state xeS and put =[_Jff". A non-

negative and _@measurable function u is called -superharmonic if

(1.1) u(x) >__ HAu(x for every A
and -continuous if

(1.2) Hu(x)-u(x) for any A in such that P{3 0}-1,
where 3 is the positive hitting time for the set A, that is,
--inf {t > 0, x, e A}.) In these terminologies, a nonnegative super-
harmonic function u in the usual sense is caught in the following
way. Let S be an open domain of R and X, the Brownian motion
on S. Consider the euclidean metric p and denote the ball {y; p(x, y)
r} by U,. A nonnegative function u is superharmonic in the
classical sense if and only if it is -superharmonic and -continuous

with respect to the family induced by x,; r>0 and x is
compact}2

According to Proposition 2.4 of (I), any excessive function is
superharmonic and -continuous for any family if". The converse
problem is now stated as follows: For what family does it hold
that every -superharmonic and -continuous function is excessive?
This problem is solved for a sufficiently large , affirmatively. For
example, a theorem due to Dynkin 14) asserts that it is enough to
take the family such that x-{every compact sets in S], if .X
satisfies the quasi-continuity from the left.d) But this theorem seems

1) In this paper we shall use the terminologies and notations of the previous paper
[4] with no special reference. In the following, it will be quoted as (I).

2) Since A is admissible, the nonnegative hitting time aA’-inf {t>_-0, xtA} is a
Markov time. Noting that t+aA(W+) $(W), is also a Markov time.

3) In this case, it is shown that the P-continuity with respect to our family is
equivalent to the lower semicontinuity, using special properties of the Brownian motion.

4) He stated this theorem without proof. Recently, Motoo has proved it (private
communication).

5) For the definition, see [2]. It is known that any Borel set (and therefore any
compact set) of S is admissible if X is quasi-continuous from the left.
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to be sometimes inconvenient for application. In fact, the family
ff in Dynkin’s theorem is so large and complicated that it is not
easy to verify whether a given function is superharmonic in Dynkin’s
sense even for the case of a Brownian motion. As was introduced
in (I), the function u is called simply superharmonic if there exists
some open base cU such that u is ff-superharmonic with respect to

the family induced by -[U U is any set of cU containing X}. 6)

The purpose of this paper is to prove the following
THEOREM 1. Let X be a strict Markov process whose Green

operator G, (a>O) maps the family C(S) of all bounded continuous
functions into itself. Then every lower semicontinuous superharmonic
function is excessive.

It should be noted that our theorem is still unsatisfactory,
because in it we assume the conditions on G or the lower semi-
continuity of functions which are not essential in probability theory.
It is an open problem to the author whether we can always replace
the lower semicontinuity by the -continuity with respect to our
family.

2. Generator. In this section we shall summarize some results
on the generator due to K. It6 [3.

Let X be a strict Markov process and Dx(S), the set of all
bounded _-measurable functions satisfying that, for any x and for
any sequence of constant times such that tj60, f(xtj)->f(x) with Px-
probability 1. In general, D.(S) C(S). Moreover note that Dx(S)
=B(S)7) if X is a regular step process. G. (a>0) maps Dx(S) into
itself and its range G(Dx(S)) is independent of a:>0. Denote G(Dx(S))
by (). G (a>0) defines an one-to-one mapping from Dx(S) onto
_q)(_) and -a-Gj(()->Dx(S)) is known to be an operator inde-
pendent of a. _ff is called the generator of X. In particular, if Go
is also a bounded operator (i.e. sup Go(x, S)< + o), we have Go(Dx(S))

=(). If A is admissible and 0<E(a)<+o, we have

Ex(a)
for every u e(_ff). Therefore, if X is a regular step process, put-
ting A--{x], it follows that
(2.2) u(x)--(u(x) for every u e.q)(_),
where , is the Dynkin generator (see (I)).

:. Approximation ot: a general process by regular step processes.
We shall start with the following simple

6) Sincec is open, we have 3c(w)=ac(w) for every w. Therefore, our defini-
tion of superharmonic functions is the same as in (I).

7) B(S)=the set of all bounded -measurable functions.
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LEMMA 3.1. Let the strict Markov processes X, X) satisfy the
conditions that (1) .q)()(_(")) and that (2)for any fixed x and
for any 0, there exists some compact set K such that

(3.1) Go’(x, K)< for every n.

Moreover suppose that (a)u(_ff), (b)()u is uniformly bounded
and (c) ()u converges to u, uniformly on any compact set. Then,
for f G;u, we have
(3.2) lim Gf-u(-Gf).

PROOF. Since u ()), there exists f)-[G’] u and we have
)u--au--f. By (b) and (c), f() is uniformly bounded in n and
f(") converges to f, uniformly on any compact set. Then it follows
that, for a compact set K,

G. If --f](x)
supf()(y)--f(y)]GT)(x, K)+AG’)(x, g),

sup f)(y)-- f(y) +AG’)(x, K),
yeK

where A--supf()(x)l+supf(x)]. Taking a sufficiently large K and

letting n, the last expression can be made arbitrarily small.
Now let be an open base and p, any metric of S. For each

n, we can choose the systems [r()- i-1, 2, .], [v)’. i--1,2, of sets
in satisfying the following conditions. (1) Each U) is compact

and d(U)) <.) (2) )U) for every i. (3) V)-S. (4) For

any compact set K, only the finite number of V)’s intersect with
K. We now define a) by

i")(w)-qy2dw)+[’)(w%.) for k>2.

LEMMA 3.2. (i) ’ (and therefore every ) is a Markov time.
(ii) lim).

PROOF. Noting that every open set is admissible, (i) is clear from
the formula

To prove (ii), assume that lim a(w)<a(w)for some w. Then, from

the definition of W (see (I)), lira x-((w) exists in S and the tra-

jectory {x,(w); t Glim ’(w)} is contained in some eompaet set K(w).

8) d(U")) is the p-diameter of rrc’), that is, sup (z, y).
x y U)
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Putting -- inf p(V[, U--.()) 0, we have

which is a contradiction.

LEMMA 3.3. Let X be a strict Markov process such that G (a O)
C(S)C(S) and
(3.4) sup Go(x, S)< +.
(i) For each n, q()(x)--[E(a)J - and H()(x,A)--P(xeA) satisfy

the conditions in Proposition 3.2 of (I). The regular step process
corresponding to (q(n), ) is denoted by X( and the Green operator

of X(’, by G". (ii) X approximates X in the following sense:

(3.5) lim GTf--Gf for every a>O and every f eC(S).

REMARK. It is easily verified that (3.5) implies

(3.6) lim inf G’fGf (aO)

for every lower semicontinuous function f0.
PROOF. (i) A simple calculation shows that,

-1Eq(n)(x) Ex(Gc) Ex(a)eZ(xt)

NGo(x, S)< + for xe V["- V;’ =V)"
which proves q(n)()O. It is self-evident that the other conditions
for the canonical system are satisfied by (q(), )).

(ii). From Lemma 3.2. (ii),

0 k kO

kO

According to (3.4), G) is a bounded operator as well as G0. Therefore,
2()-Go(Dz(S)) and 2(("))-G’)(Dx(,)(S)). Moreover
=B(S), because X() is a regular step process. Consequently, in order
to prove ()((n)), it is enough to show that, for any f0 of
B(S), Gof is a Gg")-potential. But

so that Gof is a G0 -potential according to Proposition 3.6 of (I).)

Next to show (3.1), take a compact set K such that Go(x, )<e and
put A()- r(’. It is immediate from the definition of U[" that

9) z(.) denotes the indicator function of the set A.
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A) is contained in some compact set K. By simple consideration,
we get

(’[+( ) { I)+Zs(X) dt}
Therefore

hus we see that our roeesses X, X satisfy the eonditions (1), (2)
of Lemma 8.1.

Now take any f(S) and ut -Gf. Sinee e(S) from
the assumption, ---f is also bounded and continuous. Noting
tha () and recalling the remark of Proposition 2.1, we have

u(x) ’u(x) u.x.
E(

Consequently it follows from (2.1) that, if xe V"- V[" N= ],

U(X)--(n)u(x) U(X)-- (u())-u(x)

su ()-(v)I,
"()

which implies that satisfies the conditions (b), (e) in Lemma 8.1.
herefore we can aly Lemma 8.1 for any fe(S) and our lemma
is roved completely.

4. Proof of Theorem 1. Let X be the process of heorem 1
and X (>0), the -subroeess of X. oreover suose that is
lower semieontinuous and suerharmonie with respect to the
base (-suerharmonie). Clearly is -suerharmonie for X.
he -th regular ste roeess of Lemma 8.8 induced by he base

is denoted by X’. Prom the definition of X’, is ,-
superharmonie. herefore, G’, aeeording to heorem of (I).
0n he other hand, since X( satisfies the assumptions of Lemma
8.8, X’ agroximates X in the sense of (8.g). Noting ha is
lower semieontinuous, it follows from the remark of Lemma 8.8
that lim inf G’’ aG G+. Letting 0, we have ()
().

10) Added in proof: We have just proved that every u -q)(_) can be written in the
form U=Go(n)f(n). We can easily show that f(n)eB(S), using (2.1).

11) In general, it is known that E(x)(u(x,,))=Ex(e-u(x)) for any Markov time
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Considering the lower semicontinuity of u, we get

(I(w)__>lim inf G()_>_E e-t lim inf u(/)dt >().

Consequently, accordinff o Proposition 2.4 of (I), i excessive.
5. Some urther results. I should be noed ha Theorem

doe no contain direcl he ac ha an nonneaive uperharmonic
uncion in he usual sense is an excessive function associated wih
he Brownian moion. To cover such case or ohers, we shall ake
another amil as nd derive a imilar resul o Theorem .

Le be a meric o and U(, ), he ball ; (,)]. Nex
define =[U(x,r);rO and U(x,r) is compact] and =.
Moreover take a sequence of positive -measurable functions r()(x)
such that (1) U(x, r(n)(x)), (2) inf r()(x))O (for any compact K) and

(3) sup r(n)(X)O (n). Then it is shown that r’(w)-%z( (w)
S

(and therefore every )(w) 2(w)+)(w2)) is a Markov time and
(’) in Lemma 3.3. Thereforethat such -() acts as a substitute for ,

the argument of Section 4 is applicable for -superharmonic func-
tions and we get

THEOaEM 2. Let X be the process of Theorem 1. Then, if u is
lower semicontinuous and -superharmonic for some metric p, it
is excessive.

In particular, if G maps the family B(S) of all bounded -measurable functions into C(S), any excessive function is lower semi-
continuous. Combining Proposition 2.4 of (I), Theorem 1 and Theorem
2, we have

TnEOaEM 3. Suppose that X is a strict Markov process such
that G, (a)0): B(S)C(S). hen a function u is excessive if and
only if it is lower semicontinuous and superharmonic (or -superharmonic for some p.
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