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1. Introduction. Let X be a strict Markov process on a locally
compact Hausdorff space.” Consider a family &, of admissible sub-
sets which depends on the state x¢S and put S=U%,. A non-

x€S

negative and $B-measurable function « is called F-superharmonic if
1.1) w(w)= H; w(x) for every Aed,,
and SF-continuous if
1.2) H, 4, w@)>u(z) for any A, in F, such that PG, J0}=1,
where G, is the positive hitting time for the set A, that is, 7,
=inf {t>0, x,€ A}.¥* In these terminologies, a nonnegative super-
harmonic function » in the usual sense is caught in the following
way. Let S be an open domain of R" and X, the Brownian motion
on S. Consider the euclidean metric p and denote the ball {y; o(z, )
<r} by U, ,. A nonnegative function u is superharmonic in the
classical sense if and only if it is S-superharmonic and SF-continuous
with respect to the family & induced by _CF,”:{D-';J; >0 and 17,,, is
compact}.®

According to Proposition 2.4 of (I), any excessive function is -
superharmonic and F-continuous for any family <. The converse
problem is now stated as follows: For what family G does it hold
that every F-superharmonic and F-continuous function is excessive?
This problem is solved for a sufficiently large &, affirmatively. For
example, a theorem due to Dynkin [1]* asserts that it is enough to
take the family & such that &F,={every compact sets in S}, if X
satisfies the quasi-continuity from the left. But this theorem seems

1) In this paper we shall use the terminologies and notations of the previous paper
[4] with no special reference. In the following, it will be quoted as (I).

2) Since A is admissible, the nonnegative hitting time os4=inf {t¢=0, z;€ A} is a
Markov time. Noting that t-+o4(w;") | 4(w), 54 is also a Markov time.

8) In this case, it is shown that the J-continuity with respect to our family is
equivalent to the lower semicontinuity, using special properties of the Brownian motion.

4) He stated this theorem without proof. Recently, Motoo has proved it (private
communication).

5) For the definition, see [2]. It is known that any Borel set (and therefore any
compact set) of S is admissible if X is quasi-continuous from the left.
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to be sometimes inconvenient for application. In fact, the family
& in Dynkin’s theorem is so large and complicated that it is not
easy to verify whether a given function is superharmonic in Dynkin’s
sense even for the case of a Brownian motion. As was introduced
in (I), the function w is called simply superharmonic if there exists
some open base U such that u is F-superharmonic with respect to
the family & induced by &,={U’ U is any set of U containing x}.®
The purpose of this paper is to prove the following

THEOREM 1. Let X be a strict Markov process whose Green
operator G, (a>0) maps the family C(S) of all bounded continuous
Junctions into itself. Then every lower semicontinuouns superharmonic
Sfumnction is excessive.

It should be noted that our theorem is still unsatisfactory,
because in it we assume the conditions on G, or the lower semi-
continuity of functions which are not essential in probability theory.
It is an open problem to the author whether we can always replace
the lower semicontinuity by the -continuity with respect to our
family.

2. Generator. In this section we shall summarize some results
on the generator due to K. Itd [3].

Let X be a strict Markov process and D,(S), the set of all
bounded $B-measurable functions satisfying that, for any « and for
any sequence of constant times such that ¢,]0, f(x, >f (x) with P,-
probability 1. In general, D (S)2C(S). Moreover note that D,(S)
=B(S)” if X is a regular step process. G, (a>0) maps D4(S) into
itself and its range G.(Dx(S)) is independent of a>0. Denote G.(Dx(S))
by 9D(G). G. (a>0) defines an one-to-one mapping from D,(S) onto
9(G) and G=a—G;(D(G)>Dx(S)) is known to be an operator inde-
pendent of a. & is called the generator of X. In particular, if G,
is also a bounded operator (i.e. sup Gy, S)< + o), we have Gy(Dx(S))
=9 (G). If A is admissible and 0< E (¢,)<+ o, we have
(21) Gu(a)— HD=UE) | < g5 | Gue)— Gu(y) |
E(o,) ye de
for every ue9(G). Therefore, if X is a regular step process, put-
ting A={x}°, it follows that
(2.2) Gu(x)=G,u(x) for every ue 9(G),
where &, is the Dynkin generator (see (I)).

3. Approximation of a general process by regular step processes.
We shall start with the following simple

6) Since U’ is open, we have dgc(w)=ozc(w) for every w. Therefore, our defini-
tion of superharmonic functions is the same as in (I).
7) B(S)=the set of all bounded B-measurable functions.
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LeEmMA 8.1. Let the strict Markov processes X, X™ satisfy the
conditions that (1) D(G)S D(G™) and that (2) for any fixed x and
Jor any >0, there exists some compact set K such that
3.1) G™(x, K)<e for every n.

Moreover suppose that (a) ue D(G), (b) G™u is uniformly bounded
and (¢) G u converges to Gu, uniformly on any compact set. Then,
Jor f=G;'u, we have

(8.2) lim G f =u(=G.f).

7>

PROOF. Since ue D(G™), there exists f=[G] 'u and we have
GPu=au—f. By (b) and (¢), f* is uniformly bounded in % and
JF™ converges to f, uniformly on any compact set. Then it follows
that, for a compact set K,

|Gof @) =GP F @)= GPLF”— F1@)|
< sup | £ ()~ F ()| 6@, )+ AGP(@, K,

<Lsup| 7o) - £) [+-4G@, )

where A=sup | f“(x)|+sup|f(x)]|. Taking a sufficiently large K and

letting n—> oo, the last expression can be made arbitrarily small.
Now let U be an open base and p, any metric of S. For each
n, we can choose the systems {U{™;1=1,2,---},{V{;i=1,2,--.} of sets

in U satisfying the following conditions. (1) Each U™ is compact
and d(U§”>)<~71%—.8) (2) VU for every i. (3) UViP=S. (4) For
any compact set K, only the finite number of V{’s intersect with
K. We now define 6§ by
(3 )=o) i seVe-ven Vi)
o (w) =072 (w)+ aﬁ”’(wf;:gl) for k=2.
LEMMA 3.2. (i) of® (and therefore every of°) is a Markov time.

(ii) lim 6§° = 0.

k>0
ProoOF. Noting that every open set is admissible, (i) is clear from
the formula

t—1
ozt = [rlw) 2¢, sw)e Vir—veon[ v ).
7 =
To prove (ii), assume that lim ¢§°(w)<o(w) for some w. Then, from
k>0
the definition of W (see (I)), }cim Z,8o(w) exists in S and the tra-

jectory {x,(w); t<lim ¢7°(w)} is contained in some compact set K(w).
F>00

8) d(U™) is the o-diameter of U™, that is, sup o, y).
x,'yeUg"')
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Putting o= inf o(V{, US™)>0, we have

V{0 Rew)=s
0 < P(ogmeu (W), Lo4 cun(w))>0 (k> o0),
which is a contradiction.

LEMMA 38.8. Let X be a strict Markov process such that G, (a>0)
C(S)~>C(S) and
(8.4) sup Gy(, S)< 4 oo,
(i) For each m, ¢ (v)=[E,(of”)] " and [ (x, A)=P (x,eA) satisfy
the conditions in Proposition 3.2 of (I). The regular step process
corresponding to (¢, [1”) is denoted by X and the Green operator
of X, by G, (ii) X approximates X in the following sense:
(8.5) 1”11110 G™f=G.f for every a>0 and every feC(S).

REMARK. It is easily verified that (3.5) implies
(3.6) lim inf G f =G.f (a>0)

n-»oo

for every lower semicontinuous function f=0.
PrROOF. (i) A simple calculation shows that,

P J—

o D]
[0 @) =Euloggor)=Eo{ | 7T () dt)
<G, )<+e for acVe—ven[ UV,

J=1
which proves ¢™(x)>0. It is self-evident that the other conditions
for the canonical system are satisfied by (¢, 1.

(ii). From Lemma 3.2. (ii),
ao(n)

6o, H=E(| "1y at) = SE(] " xw) at).
0 k20 o™
=3 BB, o) =S EALg ™ )] )
k20 & k=0

=k§2]0[:n(n):|k[q(n):|—l(x):ng)(x, S).
According to (3.4), G{™ is a bounded operator as well as G,. Therefore,
DG)=Gy(Dx(S)) and D(G™)=G(Dx=(S)). Moreover Dym(S)
=B(S), because X is a regular step process. Consequently, in order
to prove D(G)SID(G™), it is enough to show that, for any f =0 of
B(S), G,f is a Gi™-potential. But

Foo>Gf (@)= [H‘m]’cGof(x)=Ex<gzz‘)f(w¢) t)>,

so that G,f is a G{™-potential, according to Proposition 3.6 of (I).\”

Next to show (3.1), take a compact set K such that Gy(x, I?c)<e and
put A= {J U{™. It is immediate from the definition of U{™ that

(D
Ui E=¢

9) x4(+) denotes the indicator function of the set A.
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A is contained in some compact set K. By simple consideration,

we get
(n)

G(In) o
B[ teo) at) 2 B, fraang)| " 1) ]
Dkn ﬂkn
=E {Xge(x,0) ¢ (2.0) ] =[TT]* [¢™] X xe().
Therefore

RO
&> 6w, B)= S B,(| " ae(a) )
Tk

2 2 [T g™ ] Xxe(@) = Gi(w, K°).

Thus we see that our processes X, X satisfy the conditions (1), (2)
of Lemma 3.1.

Now take any feC(S) and put u=G,f. Since uecC(S) from
the assumption, Gu=au—f is also bounded and continuous. Noting
that ue 9(G™) and recalling the remark of Proposition 2.1, we have
Ex(u(w,gm)) —u(zx)

E (1)

Consequently it follows from (2.1) that, if xeV®»—-V®™ ﬂEUiVj‘”)],
Ex(u(xvlgf)c)) - u(w)
B (o5g5°)

< sup | Qu(x) —Gu(y)|,
yeUg”)
which implies that u satisfies the conditions (b), (¢) in Lemma 3.1.
Therefore we can apply Lemma 3.1 for any feC(S) and our lemma
is proved completely.

4. Proof of Theorem 1. Let X be the process of Theorem 1
and X (8>0), the S-subprocess of X. Moreover suppose that « is
lower semicontinuous and superharmonic with respect to the open
base U(U-superharmonic). Clearly w is <U-superharmonic for X
The n-th regular step process of Lemma 3.8 induced by the base
U is denoted by X, From the definition of X*™ w is []%™-
superharmonic. Therefore, u=aG¥™u, according to Theorem of (I).
On the other hand, since X‘® gsatisfies the assumptions of Lemma
3.3, X*™ approximates X in the sense of (8.5). Noting that u is
lower semicontinuous, it follows from the remark of Lemma 3.3
that w=lim inf aG¥™u= aGPu=aG..su. Letting p—0, we have u(x)

7->00

= aGu(2).

Gmu(e) =G5 u(x)=

| Gu(w) — G u(w) | =| Gu(x) —

10) Added in proof: We have just proved that every we<<9(G) can be written in the
form u=G,™f™. We can easily show that f™<B(S), using (2.1).
11) In general, it is known that E{P(u(we))=Es(e~#*u(x.)) for any Markov time o.
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Considering the lower semicontinuity of u, we get
w(@)=lim inf aG.u(x) = E, (S”e—t lim inf u(xt/,,)dt> > u(@).
@00 0 >0

Consequently, according to Proposition 2.4 of (I), u is excessive.

5. Some further results. It should be noted that Theorem 1
does not contain directly the fact that any nonnegative superharmoniec
function in the usual sense is an excessive function associated with
the Brownian motion. To cover such case or others, we shall take
another family as & and derive a similar result to Theorem 1.

Let p be a metric of S and U(z,r), the ball {y; o(x, y)<r}. Next
define S¢={U(xz,r);r>0 and U(x,r) is compact} and Fr=F:.

xz€S

Moreover take a sequence of positive B-measurable functions »™(x)
such that (1) U(z, r™(x))eFt, (2) ;?Ii{' r”(2) >0 (for any compact K) and
3) sup "(2)40 (n— o0 ). Then it is shown that r&m(w):omc(w)
(and therefore every r%"(w)=r§,”_1(w)+r§">(w,;:f»_>1)) is a Markov time and
that such { acts as a substitute for ¢%° in Lemma 3.8. Therefore
the argument of Section 4 is applicable for F*-superharmonic fune-
tions and we get

THEOREM 2. Let X be the process of Theorem 1. Then, if u is
lower semicontinuous and Fe-superharmonic for some metric p, it
18 excessive.

In particular, if G, maps the family B(S) of all bounded $-
measurable functions into C(S), any excessive function is lower semi-
continuous. Combining Proposition 2.4 of (I), Theorem 1 and Theorem
2, we have

THEOREM 3. Suppose that X is a strict Markov process such
that G, (a>0): B(S)—>C(S). Then a function u is excessive if and
only if it is lower semicontinuous and superharmonic (or F*-
superharmonic for some p.
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