214. Fubini Theorems for Generalized Lebesgue-Bochner-Stieltjes Integral

By Witold M. BOGDANOWICZ

Catholic University of America, Washington, D.C. (Comm. by Kinjirô KUNUGI, M.J.A., Dec. 13, 1965)

Let R be the space of reals. If Y_i, W $(i=1, \dots, k)$ are seminormed spaces then by $L(Y_1, \dots, Y_k; W)$ we shall denote the space of all operators u which are k-linear and continuous from the product of the spaces Y_i $(i=1, \dots, k)$ into the space W. The seminorm of elements in the above spaces will be denoted by $| \cdot |$.

A family of sets V of an abstract space X will be called a prering if for any two sets $A_1, A_2 \in V$ we have $A_1 \cap A_2 \in V$, and there exists disjoint sets $B_1, \dots, B_k \in V$ such that $A_1 \setminus A_2 = B_1 \cup \dots \cup B_k$.

A nonnegative function v on the pre-ring V will be called a volume if for every countable family of disjoint sets $A_t \in V$ $(t \in T)$ such that $A = \sum_{n} A_i \in V$ we have $v(A) = \sum_{n} v(A_i)$.

A triple (X, V, v) where V is a pre-ring of sets of X and v is a volume on V, will be called a volume space. If the triples (X_i, V_i, v_i) $(i=1, \dots, k)$ are volume spaces then the triple (X, V, v)defined by $X=X_1\times\dots\times X_k$ and $V=V_1\times\dots\times V_k$ consisting of all sets of the form $A=A_1\times\dots\times A_k$; $A_i \in V_i$ with $v(A)=v_1(A_1)\cdots v_k(A_k)$ is a volume space.

Let (X, V, v) be a fixed volume space. Denote by $M_q(v, Z)$ $(1 < q \le \infty)$ the space of all finite additive functions μ from the prering V into a Banach space Z and such that $\mu(A) = 0$ if v(A) = 0 and $\sup \{(\sum_n |\mu(A_n)|^q v(A_n)^{1-q})^{1/q}\} = ||\mu||_q < \infty$

when $q \neq \infty$, where the supremum is taken over all finite families of disjoint sets $A_n \in V$ such that $v(A_n) > 0$. In the case when $q = \infty$ let $\sup \{ |\mu(A)| v(A)^{-1} : A \in V \} = ||\mu||_q < \infty$ where the supremum is taken over all sets $A \in V$ such that v(A) > 0.

Now if $1/p_i+1/q_i=1$, $p_i\geq 1$, i=1,2 and $u\in L(Y_1, Y_2, Z; W)$, denote by $M(q_i, v_i, Z, u)$ the family of all functions $\mu(A_1, A_2)$ from $V_1 \times V_2$ into Z which are additive in each variable A_i separately and $\mu(A_1, A_2)=0$ if $v_1(A_1)=0$ or $v_2(A_2)=0$; moreover assume that the following norm is finite $||\mu|| = \sup\{|\sum_{ij} u(y_{1i}, y_{2j}, \mu(A_{1i}, A_{2j}))(v_1(A_{1i}))^{-1/p_1}(v_2(A_{2j}))^{-1/p_2}a_{1i}a_{2j}|\}$ where the supremum is taken over all finite systems such that $||y_{1i}||\leq 1$ $||y_{2j}||\leq 1, \sum |a_{1i}|^{p_1}\leq 1, \sum |a_{2j}|^{p_2}\leq 1$, where A_{1i} is a family of disjoint sets of the pre-ring V_1 such that $v_1(A_{1i})>0$ and similarly A_{2j} is a finite family of disjoint sets of the pre-ring V_2 such that $v_2(A_{2j})>0$. W. M. BOGDANOWICZ

If $q=q_1=q_2$ and $u(y_1, y_2, z)=z(y_1, y_2)$ for $y_i \in Y_i, z \in L(Y_1, Y_2; W)$ then we have $M_q(v, Z) \subset M(q, q, v_1, v_2, Z, u)$.

Theorem 1. Let (X, V, v) be the product volume space of the volume spaces (X_i, V_i, v_i) $(i=1, \dots, k)$. If $\mu_i \in M_q(v_i, Z_i)$ where $1 < q \le \infty$ and $u \in L(Z_i, \dots, Z_k; W)$ then $\mu \in M_q(v, W)$ where

 $\mu(A_1 \times \cdots \times A_k) = u(\mu_1(A_1), \cdots, \mu_k(A_k)) \quad \text{for } A \in V$

Let (X, V, v) be a volume space and Y be a fixed Banach space. Denote by S(V, Y) = S(Y) the set of all functions of the form $h = y_1 \chi_{A_1} + \cdots + y_k \chi_{A_k}$ where $y_i \in Y_i$ and $A_i \in V$ are disjoint sets. Put $||h|| = |y_1| v(A_1) + \cdots + |y_k| v(A_k)$.

A sequence of functions s_n is called basic if there exist a sequence $h_n \in S(Y)$ and a constant M > 0 such that $s_n = h_1 + \cdots + h_n$, $||h_n|| \le M4^{-n}$ for $n=1, 2, \cdots$

A set $A \subset X$ is called a null set if for every $\varepsilon > 0$ there exists a countable family of sets $A_t \in V$ $(t \in T)$ such that $A \subset \bigcup_T A_t$ and $\sum_T v(A_t) < \varepsilon$.

A condition c(x) depending on a parameter $x \in A_0 \subset X$ is said to be satisfied almost everywhere on the set A_0 if there exists a null set A such that condition is satisfied at every point of the set $A_0 \setminus A$.

Denote by $L_1(v, Y)$ the space of all functions f such that there exists a basic sequence s_n convergent almost everywhere on the space X to the function f. Put $||f|| = \lim ||s_n||$. This definition is correct, that is, it doesn't depend on the particular choice of the basic sequence. It follows from Theorem 1 [1], that the space $(L_1(v, Y), || ||)$ is a complete seminormed space. The set of simple functions S(V, Y) is dense in the space $L_1(v, Y)$ according to Lemmas 1 and 4 [1].

Now let $1 \le p < \infty$. Denote by a the function $a(y) = |y|^{p-1_y}$ for $y \in Y$. Since the function and its inverse $a^{-1}(y) = |y|^{1/p-1_y}$ for $y \in Y$ are continuous on the space Y therefore it establishes a homeomorphism of the space onto itself.

Denote by $L_p(v, Y)$ the space of all functions f from the set X into the space Y such that $a \circ f \in L_i(v, Y)$. Put

$$||f||_{p} = \left(\int |a \circ f| dv\right)^{1/p} = \left(\int |f(x)|^{p} dv\right)^{1/p}.$$

The space $(L_p(v, Y), || ||_p)$ is a complete seminormed space and the set S(V, Y) is dense in it according to Theorem 1 [4].

Now let (X, V, v) be the product space of the volume spaces (X_i, V_i, v_i) (i=1, 2). Take any simple functions $s_i \in S(V_i, Y_i)$ and assume that $s_i = \sum_{n_i} y_{n_i} \chi_{A_{n_i}}$. Let $\mu \in M_q(v, Z)$ and let u be a multilinear continuous operator from the product of the Banach spaces Y_1, Y_2, Z into a Banach space W. Define

980

Fubini Theorems for Integral

$$\int \! u(s_1, s_2, d\mu) = \sum_{n_1, n_2} u(y_{n_1}, y_{n_2}, \mu(A_{n_1} \times A_{n_2})).$$

It is easy to see that the definition is correct. Put $U = L(Y_1, Y_2, Z; W)$. The integral operator just defined is linear in each variable u, s_1, s_2, μ separately and is defined on a dense set of the product of the spaces $U, L_p(v_1, Y_1), L_p(v_2, Y_2), M_q(v, A)$, where 1 and <math>1/p + 1/q = 1. Now from the inequality

$$\int \! u(s_{\scriptscriptstyle 1}, \, s_{\scriptscriptstyle 2}, \, d\mu) \Big| \leq \mid u \mid \mid \mid s_{\scriptscriptstyle 1} \mid \mid_p \mid \mid s_{\scriptscriptstyle 2} \mid \mid_p \mid \mid \mu \mid \mid_q$$

and from the completeness of the space W we get that there exists a unique extension of the operator to a multilinear continuous operator defined on $U \times L_p(v_1, Y_1) \times L_p(v_2, Y_2) \times M_q(v, Z)$.

In a similar way one could define the integral operator $\int u_0(f, d\mu)$ for $f \in L_p(v, Y)$, $\mu \in M_q(v, X)$, $u_0 \in L(Y, Z; W)$. When it is important to indicate the variable of integration which shall use the symbol $\int u_0(f(x), \mu(dx)).$

Fubini's Theorem for the integral $\int u(f_1, f_2, d\mu)$

Take any multilinear continuous operator $u \in L(Y_1, Y_2, Z; W) = U$. Define an operator $u_1(y_2, z) = u(\cdot, y_2, z)$ for $y_2 \in Y_2, z \in Z$. We see that $u_1 \in L(Y_2, Z; Z_0) = U_1$ where $Z_0 = L(Y_1, W)$. Define also the operator $u_0(y_1, z_0) = z_0(y_1)$ for $y_1 \in Y_1, z_0 \in Z_0$. We have $u_0 \in L(Y_1, Z_0; W)$ and $|u| = |u_1|, |u_0| = 1$.

Let (X, V, v) be the product volume space of the volume spaces (X_i, V_i, v_i) (i=1, 2). Assume that $1 \le p < \infty$ and 1/p + 1/q = 1. We have the following theorem.

Theorem 2. (1) If $\mu \in M_q(v, Z)$ then for all $A_1 \in V_1$ the vector function μ_{A_1} defined by the formula

 $\mu_{A_1}(A_2)\!=\!\mu(A_1\! imes\!A_2) ext{ for all } A_2 \in V_2$

belongs to the space $M_q(v_2, Z)$.

(2) The operator $\mu_1 = r(f_2, \mu)$ defined by means of the integral $\mu_1(A_1) = \int u_1(f_2, d\mu_{A_1})$ for all $A_1 \in V_1$

is bilinear from the product $L_p(v_2, Y_2) imes M_q(v, Z)$ into the space $M_q(v, Z_0)$ and

 $|| \mu_1 ||_q \leq |u| || f_2 ||_p || \mu ||_q$ for all $f_2 \in L_p(v_2, Y_2), \mu \in M_q(v, Z)$.

(3) Moreover the following equality holds

$$\int \! u(f_1, f_2, d\mu) \!=\! \int \! u_0(f_1, dr(f_2, \mu))$$

for all $f_i \in L_p(v_i, Y_i)$ $(i=1, 2), \mu \in M_q(v, Z)$.

(The above theorem can be easily generalized to the case when $f_1 \in L_{p_1}(v_1, Y_1), f_2 \in L_{p_2}(v_2, Y_2)$, and $\mu \in M(q_1, q_2, v_1, v_2, Z, u) = M$.

No. 10]

W. M. BOGDANOWICZ

[Vol. 41,

If we take the trilinear operator $u(y_1, y_2, z) = z(y_1, y_2)$ for $y_i \in Y_i$, $z \in Z$ and define $Z = L(Y_1, Y_2; W)$, then the space M is isomorphic and isometric to the space of all bilinear continuous operators h from the product $L_{p_1}(v_1, Y_1) \times L_{p_2}(v_2, Y_2)$ into the space W).

Consider the following example. Let Y_i, Z, W be equal to the space C of complex numbers. Let $u(y_1, y_2, z) = y_1y_2z$. Then we have $u_1(y_2, z) = y_2z$ and $u_0(y_1, z_0) = y_1z_0$. If $f_i \in L_p(v_i, C), \mu \in M_q(v, C)$ then we get from the theorem

$$\int f_1(x_1)f_2(x_2)\mu(dx_1 \times dx_2) = \int f_1(x_1)\mu_1(dx_1)$$

where $\mu_1(A_1) = \int f_2(x_2) \mu(A_1 \times dx_2)$ for all $A_1 \in V_1$.

Fubini's theorem for generalized Lebesgue-Bochner-Stieltjes integral.

Denote by (X, V, v) the product volume space of the volume spaces (X_i, V_i, v_i) . Let $1 \le p < \infty$ and 1/p + 1/q = 1.

Let Y, Z_1, Z_2, W be Banach spaces. Assume that $u \in U = L(Y, Z_1, Z_2; W)$ and define a new operator $u_1(y, z_2) = u(y, \cdot, z_2)$ for $y \in Y$, and $z_2 \in Z_2$. We see that $u_1 \in L(Y, Z_2; Y_1)$, where $Y_1 = L(Z_1; W)$. Define $u_0(y_1, z_1) = y_1(z_1)$ for $y_1 \in Y_1$ and $z_1 \in Z_1$. Notice that $u_0 \in L(Y_1, Z_1; W)$ and $|u| = |u_1|$ and $|u_0| = 1$.

Put $N = \{f \in L_p(v_1, Y_1): ||f||_p = 0\}$. The set N is linear and according Theorem 1 [1], coincides with the set of all functions f from the set X_1 into the space Y_1 such that f(x)=0 v_1 -a.e.

Consider the quotient space $L_p(v_1, Y_1)/N$ and define the norm of a class [f]=f+N by $||[f]||_p=||f||_p$. This definition is correct. Notice that in order to determine a class [f] it is enough to give the values of the function $f(x_1)$ v_1 -almost everywhere.

Since the integral operator $\int u_0(f, d\mu)$ is linear in the variable f, and we have the estimation

$$\int u_0(f, d\mu) \leq |u_0| ||f||_p ||\mu||_q,$$

therefore the following definition

$$\int u_0([f], d\mu) = \int u_0(f, d\mu)$$

is correct where $[f] \in L_p(v_1, Y_1)/N$. The operator defined in this way $\int u_0(g, d\mu)$ is bilinear and we have

$$\left| \int u_0(g, d\mu) \right| \le |u_0| \, || \, g \, ||_p \, || \, \mu \, ||_q$$

where $g \in L_p(v_1, Y_1)/N$ and $\mu \in M_q(v_1, Z_1)$.

Theorem 3. (1) If $f \in L_p(v, Y)$, there exists a v_1 -null set C such that $f(x_1, \cdot) \in L_p(v_2, Y)$ if $x_1 \notin C$.

(2) The operator $\bar{f}_1 = r(f, \mu_2)$ defined by the formula

Fubini Theorems for Integral

$$\overline{f}(x_1) = \int u_1(f(x_1, \cdot), d\mu_2) \quad \text{if } x_1 \notin C$$

is bilinear from the product $L_p(v, Y) imes M_q(v_2, Z_2)$ into the space $L_p(v_1, Y_1)/N$ and

$$||\bar{f}||_{p} \leq |u| ||f||_{p} ||\mu_{2}||_{q}$$

for all $f \in L_p(v, Y)$ and $\mu_2 \in M_q(v_2, Z_2)$.

(3) Moreover $\int u(f, d\mu_1, d\mu_2) = \int u_0(r(f, \mu_2), d\mu_1)$ for all $f \in L_p(v, Y)$, $\mu_i \in M_q(v_i, Z_i)$ (i=1, 2).

Consider the following example. Let Y=Z be a complex Banach space and let $Z_1=Z_2=C$ be the space of complex numbers. Define $u(y, z_1, z_2)=z_1z_2y$ for all $z_i \in C, y \in Y$. We see that we may identify $Y_1=W$. Thus we have $u_1(y, z_1)=yz_1$ and also $u_0(y, z_1)=z_1y$.

Now if $f \in L_p(v, Y)$ and $\mu_i \in M_q(v_i, C)$ then $f(x_1, \cdot) \in L_p(v_2, Y)$ for v_1 -almost all $x_1 \in X_1$. For the function $h(x_1) = \int f(x_1, \cdot) d\mu_2$ we have $h \in L_p(v_1, Y)$ and

$$\int h d\mu_1 = \int \Bigl(\int f(x_1, x_2) \mu_2(dx_2) \Bigr) \mu_1(dx_1) = \int f d(\mu_1 imes \mu_2).$$

For the case p=1 we get the classical Fubini theorem for Bochner summable functions (compare Dunford and Schwartz: Linear Operators, p. 193).

This work was partially supported by National Science Foundation grant GP2565.

References

- [1] Bogdanowicz, W. M.: A generalization of the Lebesgue-Bochner-Stieltjes integral and a new approach to the theory of integration. Proc. Nat. Acad. Sc. USA, 53, 492-498 (1965).
- [2] —: Integral representations of linear continuous operators from the space of Lebesgue-Bochner summable functions into any Banach space. Proc. Nat. Acad. Sc. USA, 54, 351-354 (1965).
- [3] : Integral representations of linear continuous operators on L_p spaces of Lebesgue-Bochner summable functions, to appear in Bulletin de l'Academic Polonaise des Sciences, November (1965).
- [4] —: An approach to the theory of L_p spaces of Lebesgue-Bochner summable functions and generalized Lebesgue-Bochner-Stieltjes integral, to appear in Bulletin de l'Academie Polonaise des Sciences, November (1965).
- [5] ——: An approach to the theory of Lebesgue-Bochner measurable functions and integration on locally compact spaces (in press).
- [6] ——: An approach to the theory of integration generated by positive functionals and integral representations of linear continuous functionals on the space of vector-valued continuous functions, to appear in Math. Annalen.
- [7] ——: Multilinear integral and integral representations of multilinear continuous operators (in press).