217. A Class of Markov Processes with Interactions. II

By Tadashi Ueno
Department of Mathematics, Faculty of General Education, University of Tokyo

(Comm. by Zyoiti Suetuma, m. J. A., Dec. 12, 1969)

Here, we look at the branches which describe the interactions between particles of the model in [4]. This leads to finer proofs of Chapman-Kolmogorov equation and the backward equation. A consistency condition holds for probabilities of events which are determined by bundles of these branches.

1. To consider the simplest model with binary interactions, let $q(t, y) \equiv q_{1}(t, y)$ and $q_{0} \equiv q_{2} \equiv q_{3} \equiv \cdots \equiv 0$, and write $\pi\left(y^{\prime} \mid t, y, E\right)$ for $\pi_{1}\left(y_{1} \mid t, y, E\right)$ in 1 of [4]. ${ }^{1)}$ Then, the forward and the backward equations are

$$
P^{(f)}(s, x, t, E)=P_{0}(s, x, t, E)+\int_{s}^{t} d \tau \int_{R^{2}} P^{(f)}(s, x, \tau, d y)
$$

$$
\begin{equation*}
\times P_{s, \tau}^{(f)}\left(d y^{\prime}\right) q(\tau, y) \int_{R} \pi\left(y^{\prime} \mid \tau, y, d z\right) P_{0}(\tau, z, t, E) \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& P^{\left(P_{s o s}^{(f)}\right)}(s, x, t, E)=P_{0}(s, x, t, E)+\int_{s}^{t} d \tau \int_{R^{2}} P_{0}(s, x, \tau, d y) \tag{2}\\
& \quad \times P_{s_{0} \tau}^{(f)}\left(d y^{\prime}\right) q(\tau, y) \int_{R} \pi\left(y^{\prime} \mid \tau, y, d z\right) P^{\left(P_{s_{0 \tau}}^{(f)}\right)(\tau, z, t, E),}
\end{align*}
$$

where $P_{s, \tau}^{(f)}(E) \doteq \int_{R} f(d x) P^{(f)}(s, x, \tau, E), \quad s_{0} \leq s \leq t$.
Let T be the set of all branches which grow downward with binary branching points and the trivial branch (or a pole) b_{0}. For b_{1} and b_{2} in $T, b=\left(b_{1}, b_{2}\right)$ is the branch which has b_{1} and b_{2} on the left and the right side of the highest branching point. Length $l(b)$ and the number of the end points \#(b) are defined by

$$
\begin{aligned}
& l\left(b_{0}\right)=0, l\left(\left(b_{1}, b_{2}\right)\right)=1+\max \left(l\left(b_{1}\right), l\left(b_{2}\right)\right), \\
& \#\left(b_{0}\right)=1, \#\left(\left(b_{1}, b_{2}\right)\right)=\#\left(b_{1}\right)+\#\left(b_{2}\right) .
\end{aligned}
$$

When \#(b) $=n$, let $b\left(b_{1}, \cdots, b_{n}\right)$ be the branch b with branches b_{1}, \cdots, b_{n} connected at the end points, with b_{k} at the k-th end point from the left. We write $b \geq b^{\prime}$ when $b=b^{\prime}\left(b_{1}, \cdots, b_{n}\right)$. Since the branches b_{1}, \cdots, b_{n} are determined

1) This is for the simplicity of descriptions. Results in this paper can be extended to the models in [4].

uniquely for given b and $b^{\prime}(\leq b)$, we denote the bundle of branches $\left(b_{1}, \ldots\right.$ \cdots, b_{n}) by b / b^{\prime}. When $\#(b)=n$ and $\boldsymbol{x}=\left(x_{1}, \cdots x_{n}\right)$, let $b(\boldsymbol{x})=b\left(x_{1}, \cdots, x_{n}\right)$ be the branch b with variables x_{1}, \cdots, x_{n} at the end points, with x_{k} at the k-th end point from the left. $\left(b_{1}\left(\boldsymbol{x}_{1}\right), b_{2}\left(\boldsymbol{x}_{2}\right)\right)$ and $b\left(b_{1}\left(\boldsymbol{x}_{1}\right), \cdots, b_{n}\left(\boldsymbol{x}_{n}\right)\right)$ are defined similarly.
For $b \in T, \quad \boldsymbol{x}=\left(x_{1}, \cdots, x_{\#(b)}\right), \boldsymbol{s}=\left(s_{1}, \cdots, s_{\ddagger(b)}\right)$ and t such that $\max (s) \leq t$, we define $P(s, b(x), t, E)$ inductively by

$$
\begin{aligned}
& P\left(s_{1}, b_{0}\left(x_{1}\right), t, E\right)=P_{0}\left(s_{1}, x_{1}, t, E\right) \\
& P\left(\left(s_{1}, s_{2}\right),\left(b_{1}\left(\boldsymbol{x}_{1}\right), b_{2}\left(\boldsymbol{x}_{2}\right)\right), t, E\right)
\end{aligned}
$$

(3) $=\int_{\max \left(s_{1}, s_{2}\right)}^{t} d \tau \int_{R^{2}} P\left(s_{1}, b_{1}\left(x_{1}\right), \tau, d y\right)$
$\times P\left(s_{2}, b_{2}\left(\boldsymbol{x}_{2}\right), \tau, d y^{\prime}\right) q(\tau, y)$
$\times \int_{R} \pi\left(y^{\prime} \mid \tau, y, d z\right) P_{0}(\tau, z, t, E)$,
where $s_{1}=\left(s_{1}, \cdots, s_{m}\right), s_{2}=\left(s_{m+1}, \cdots\right.$
$\left.\cdots, s_{m+n}\right), \quad \boldsymbol{x}_{1}=\left(x_{1}, \cdots, x_{m}\right), \quad \boldsymbol{x}_{2}=\left(x_{m+1}, \cdots, x_{m+n}\right), \quad m=\#\left(b_{1}\right), \quad$ and $n=\#\left(b_{2}\right) .{ }^{2)}$
Then, by a simple induction, we have

$$
P(s, b(\boldsymbol{x}), t, R)+\int_{\max (\boldsymbol{s})}^{t} d \tau \int_{R} P(s, b(\boldsymbol{x}), \tau, d y) q(\tau, y) \leq 1,
$$

starting with the equality in case $b=b_{0}$.
2. Theorem 1. For s, t, u such that $\max (s) \leq t \leq u$,

$$
\begin{align*}
P(\boldsymbol{s}, b(\boldsymbol{x}), u, E)= & \sum_{b^{\prime} \leq b} \int_{R^{\sharp}\left(b^{\prime}\right)} \prod_{b_{k} \in b / b^{\prime}} P\left(s_{k}, b_{k}\left(\boldsymbol{x}_{k}\right), t, d y_{k}\right) \tag{4}\\
& \times P\left(t, \cdots, b^{\prime}(\boldsymbol{y}), u, E\right) .
\end{align*}
$$

Note. This is an exact extension of (52) in Feller [1] to our present model:

$$
P_{n}(s, x, u, E)=\sum_{k=0}^{n} \int_{R} P_{k}(s, x, t, d y) P_{n-k}(t, y, u, E) .
$$

Outline of the proof. For $b=b_{0}$, (4) is the Chapman-Kolmogorov equation for $P_{0}(s, x, t, E)$. If we assume the result for b_{1} and b_{2}, then for $b=\left(b_{1}, b_{2}\right)$,

$$
\begin{aligned}
& P(\boldsymbol{s}, b(\boldsymbol{x}), u, E)=\left(\int_{\max (\boldsymbol{s})}^{t} d \tau+\int_{t}^{u} d \tau\right) \int_{R^{2}} P\left(s_{1}, b_{1}\left(\boldsymbol{x}_{1}\right), \tau, d y\right) \\
& \quad \times P\left(s_{2}, b_{2}(\boldsymbol{x}), \tau, d y^{\prime}\right) q(\tau, y) \int_{R} \pi\left(y^{\prime} \mid \tau, y, d z\right) P_{0}(\tau, z, u, E)
\end{aligned}
$$

2) Intuitively, $P\left(\left(s_{1}, \cdots, s_{n}\right), b\left(x_{1}, \cdots, x_{n}\right), t, E\right)$ is the probability that the particle, started at x_{1} at time s_{1}, is in the set E at time t after the interactions with other particles which started at x_{2}, \cdots, x_{n}, at times $t_{2} \cdots, t_{n}$, respectively, where the order of the interactions are determined by the branch b.

$$
\begin{aligned}
& =\int_{R} P(\boldsymbol{s}, b(\boldsymbol{x}), t, d y) P_{0}(t, y, u, E)+\int_{t}^{u} d \tau \int_{R^{2}} \\
& \times\left\{\sum_{b^{\prime} \leq b_{1}} \int_{R^{\sharp}\left(b^{\prime}\right)} \prod_{b_{k}^{\prime} \in b_{1} / b^{\prime}} P\left(s_{k}, b_{k}^{\prime}\left(\boldsymbol{x}_{k}\right), t, d y_{k}\right) P\left((t, \cdots, t), b^{\prime}(\boldsymbol{y}), \tau, d y\right)\right\} \\
& \times\left\{\sum_{b^{\prime \prime} \leq b_{2}} \int_{R^{\sharp}\left(b^{\prime \prime}\right)} \prod_{b_{j}^{\prime} \in b_{z_{2} / b^{\prime \prime}}} P\left(s_{j}, b_{j}^{\prime \prime}\left(\boldsymbol{x}_{j}^{\prime}\right), t, d y_{j}^{\prime}\right) P\left((t, \cdots, t), b^{\prime \prime}\left(\boldsymbol{y}^{\prime}\right) \tau, d y^{\prime}\right)\right\} \\
& \times q(\tau, y) \int_{R} \pi\left(y^{\prime} \mid \tau, y, d z\right) P_{0}(\tau, z, u, E) \\
& \begin{array}{c}
=\int_{R \sharp\left(b_{0}\right)} P(s, b(\boldsymbol{x}), t, d y) P\left(t, b_{0}(y), u, E\right)+\sum_{b^{\prime} \leq b_{1}} \sum_{b^{\prime} \leq b_{2}} \int_{R \#\left(\left(b^{\prime}, b^{\prime \prime}\right)\right)} \\
\times \quad P\left(s_{k}, b_{k}^{\prime}\left(\boldsymbol{x}_{k}\right), t, d y_{k}\right) P\left(s_{j}, b_{j}^{\prime \prime}\left(\boldsymbol{x}_{j}^{\prime}\right), t, d y_{j}^{\prime}\right)
\end{array} \\
& \times \prod_{\left(b_{k}^{\prime} \in b_{1} / b^{\prime}, b_{j}^{\prime \prime} \in b_{2} / b^{\prime \prime \prime}\right)} P\left(s_{k}, b_{k}^{\prime}\left(\boldsymbol{x}_{k}\right), t, d y_{k}\right) P\left(s_{j}, b_{j}^{\prime \prime}\left(\boldsymbol{x}_{j}^{\prime}\right), t, d y_{j}^{\prime}\right) \\
& \times P\left((t, \cdots, t),\left(b^{\prime}(\boldsymbol{y}), b^{\prime \prime}\left(\boldsymbol{y}^{\prime}\right)\right), u, E\right) .
\end{aligned}
$$

But, this is the right side of (4), since $b / b_{0}=\{b\}$ and there are natural one to one correspondences between $\left\{b^{\prime} \leq b_{1}\right\} \times\left\{b^{\prime \prime} \leq b_{2}\right\}$ and $\left\{b^{\prime} \leq b\right\}-\left\{b_{0}\right\}$, between $\left\{b_{1} / b^{\prime}\right\} \times\left\{b_{2} / b^{\prime \prime}\right\}$ and $b /\left(b^{\prime}, b^{\prime \prime}\right)-\left\{b_{0}\right\}$ for each fixed $b^{\prime} \leq b_{1}$ and $b^{\prime \prime} \leq b_{2}{ }^{3}{ }^{3}$

For a branch $b\left(\neq b_{0}\right)$ and the i-th end point of b from the left, there is a unique pair of branches b^{\prime} and \hat{b} such that $b(\boldsymbol{x})=b^{\prime}\left(x_{1}, \cdots\right.$ $\left.\cdots, x_{i_{1} 1},\left(b_{0}\left(x_{i}\right), \hat{b_{(}}(\hat{\boldsymbol{x}})\right), x_{k}, \cdots, x_{n}\right)$ or $b(\boldsymbol{x})=b^{\prime}\left(x_{1}, \cdots, x_{k},\left(\hat{b}(\hat{\boldsymbol{x}}), b_{0}\left(x_{i}\right)\right)\right.$, x_{i+1}, \cdots, x_{n}) for some k. This \hat{b} is called the closest subbranch of b to the i-th end point.

Theorem 2. By substituting $\boldsymbol{s}=\left(\boldsymbol{s}_{1}, \boldsymbol{s}_{2}\right)$ and $b(\boldsymbol{x})=\left(b_{1}\left(\boldsymbol{x}_{1}\right), b_{2}\left(\boldsymbol{x}_{2}\right)\right)$ in the place of r_{1} and y_{1} of $P\left(\left(r_{1}, \cdots\right.\right.$ $\left.\left.\cdots, r_{n}\right), \tilde{b}\left(y_{1}, \cdots y_{n}\right), t, E\right)$, we have

$$
P\left(\left(s, r_{2}, \cdots, r_{n}\right), \tilde{b}\left(b(\boldsymbol{x}), y_{2}, \cdots, y_{n}\right), t, E\right)=\int_{\max (\boldsymbol{s}, \hat{r})}^{t} d \tau
$$

$$
\begin{align*}
& \times \int_{R^{2}} P\left(s_{1}, b_{1}\left(\boldsymbol{x}_{1}\right), \tau, d y\right) P\left(s_{2}, b_{2}\left(\boldsymbol{x}_{2}\right), \tau, d y^{\prime}\right) q(\tau, y) \tag{5}\\
& \times \int_{R} \pi\left(y^{\prime} \mid \tau, y, d z\right) P\left(\left(\tau, r_{2}, \cdots, r_{n}\right), \widetilde{b}\left(z, y_{2}, \cdots, y_{n}\right), t, E\right)
\end{align*}
$$

where $\hat{r}=\left(r_{2}, \cdots, r_{k}\right)$ are time parameters which correspond to the closest subbranch \hat{b} of \tilde{b} to the first end point, $s_{1}=\left(s_{1}, \cdots,{ }^{s} \#\left(b_{1}\right)\right)$ and $\boldsymbol{s}_{2}=\left(s_{\#\left(b_{1}\right)+1}, \cdots, s_{\#\left(b_{1}\right)+\#\left(b_{2}\right)}\right) .{ }^{4)}$

Outline of the proof. When $\widetilde{b}=b_{0}$, (5) coincides with (3). When $\tilde{b}=\left(b^{\prime}, b^{\prime \prime}\right)$, assume (5) with \tilde{b} replaced by b^{\prime}. Since \hat{b} is also the closest subbranch of b^{\prime} to the first end point, $P\left(\left(s, r_{2}, \cdots, r_{n}\right), \tilde{b}\left(b(\boldsymbol{x}), y_{2}, \cdots, y_{n}\right)\right.$, t, E) is equal to
3) These correspondences are of the form $b^{\prime} \times b^{\prime \prime} \rightarrow\left(b^{\prime}, b^{\prime \prime}\right)$.
4) The substitution can take place at any end point of \widetilde{b}, where the corresponding formulation is clear.

$$
\begin{aligned}
& P\left(\left(\boldsymbol{s}, \boldsymbol{r}^{\prime}, \boldsymbol{r}^{\prime \prime}\right),\left(b^{\prime}(b(\boldsymbol{x}), y), b^{\prime \prime}\left(\boldsymbol{y}^{\prime \prime}\right)\right), t, E\right) \\
& =\int_{\max \left(\boldsymbol{s}, r^{\prime}, \boldsymbol{r}^{\prime \prime}\right)}^{t} d \sigma \int_{R^{2}} P\left(\left(s, \boldsymbol{r}^{\prime}\right), b^{\prime}\left(b(\boldsymbol{x}), \boldsymbol{y}^{\prime}\right), \sigma, d y\right) P\left(\boldsymbol{r}^{\prime \prime}, b^{\prime \prime}\left(\boldsymbol{y}^{\prime \prime}\right), \sigma, d y^{\prime}\right) \\
& \quad \times q(\sigma, y) \int_{R} \pi\left(y^{\prime} \mid \sigma, y, d z\right) p_{0}(\sigma, z, t, E) \\
& =\int_{\max \left(\boldsymbol{s}, r^{\prime}, \boldsymbol{r}^{\prime \prime}\right)}^{t} d \sigma \int_{R^{2}}\left\{\int_{\max (\boldsymbol{s}, \hat{r})}^{\sigma} d \tau \int_{R^{2}} P\left(s_{1}, b_{1}\left(\boldsymbol{x}_{1}\right), \tau, d v\right)\right. \\
& \quad \times P\left(\boldsymbol{s}_{2}, b_{2}\left(\boldsymbol{x}_{2}\right), \tau, d v^{\prime}\right) q(\tau, v) \int_{R} \pi\left(v^{\prime} \mid \tau, v, d w\right) \\
& \left.\quad \times P\left(\left(\tau, \boldsymbol{r}^{\prime}\right), b^{\prime}\left(w, \boldsymbol{y}^{\prime}\right), \sigma, d y\right)\right\} P\left(\boldsymbol{r}^{\prime \prime}, b^{\prime \prime}\left(\boldsymbol{y}^{\prime \prime}\right), \sigma, d y^{\prime}\right) q(\sigma, y) \int_{R} \\
& \quad \times \pi\left(y^{\prime} \mid \sigma, y, d z\right) P_{0}(\sigma, z, t, E)
\end{aligned}
$$

with obvious notations $\boldsymbol{r}^{\prime}, \boldsymbol{r}^{\prime \prime}, \boldsymbol{y}^{\prime}, \boldsymbol{y}^{\prime \prime}$. But, this coincides with the right side of (5) by changing the order of integration by $d \sigma$ and $d \tau$, using (3).

Let $\varphi(\boldsymbol{x})$ be the sum of non-negative functions $\varphi_{k}\left(\boldsymbol{x}_{k}\right), k=1,2, \cdots$, measurable in $x_{k}=\left(x_{i_{1}, k}, \cdots, x_{i_{n_{k}, k}}\right)$, and let $I\left(\boldsymbol{x}_{k}\right)$ be the set of indices for \boldsymbol{x}_{k}. For a subset J of $I=\{1,2, \cdots\}$, we write

$$
\begin{gathered}
\int f^{\infty} \varphi(\boldsymbol{x})=\sum_{k=1}^{\infty} \int_{R^{\sharp\left(I\left(x_{k}\right)\right)}} \prod_{i \in I\left(\boldsymbol{x}_{k}\right)} f\left(d x_{i}\right) \varphi_{k}\left(\boldsymbol{x}_{k}\right), \\
\int_{J c} f^{\infty} \varphi(\boldsymbol{x})=\sum_{k=1}^{\infty} \int_{\left.R^{\sharp}\left(I\left(\boldsymbol{x}_{k}\right) \cap J\right)^{c}\right), i \in I\left(\boldsymbol{x}_{\left.x_{i}\right) \cap J C}\right)} f\left(d x_{i}\right) \varphi_{k}\left(\boldsymbol{x}_{k}\right)^{5)}
\end{gathered}
$$

Then, by a similar induction as in II of [3], we have
Theorem 3. The minimal solution $P^{(f)}(s, x, t, E)$ of (1) is given by

$$
\begin{align*}
& P^{(f)}\left(s, x_{1}, t, E\right)=\int_{(11 c} f^{\infty} \sum_{b \in T} P((s, \cdots, s), b(\boldsymbol{x}), t, E), \tag{6}\\
& P_{s, t}^{(f)}(E)=\int f^{\infty} \sum_{b \in T} P((s, \cdots, s), b(\boldsymbol{x}), t, E)
\end{align*}
$$

3. Applications. a) Chapman-Kolmogorov equation:
$P^{(f)}(s, x, u, E)=\int_{R} P^{(f)}(s, x, t, d y) P^{\left(P_{s}^{(f)}, t\right)}(t, y, u, E), s \leq t \leq u$.
Proof. By (4) and (6), $P^{(f)}\left(s, x_{1}, u, E\right)$ is equal to

$$
\begin{aligned}
& \int_{(1 \mathrm{c} \mathrm{c}} f^{\infty} \sum_{b \in T} \sum_{b^{\prime} \leq b} \int_{R \sharp\left(b^{\prime}\right)} \prod_{b_{k} \in b / b^{\prime}} P\left(s, b_{k}\left(\boldsymbol{x}_{k}\right), t, d y_{k}\right) P\left(t, b^{\prime}(\boldsymbol{y}), u, E\right)^{6)} \\
& =\int_{\{1\}} f^{\infty} \sum_{b^{\prime} \in T} \int_{R^{\sharp}\left(b^{\prime}\right)} \prod_{k=1}^{\left.\# b^{\prime}\right)} \sum_{b_{k} \in T} P\left(s, b_{k}\left(\boldsymbol{x}_{k}\right), t, d y_{k}\right) P\left(t, b^{\prime}(\boldsymbol{y}), u, E\right) \\
& =\sum_{b^{\prime} \in T} \int_{R^{\sharp}\left(b^{\prime}\right)}\left\{\int_{\{11 c} f^{\infty} \sum_{b_{1} \in T} P\left(s, b_{1}\left(\boldsymbol{x}_{1}\right), t, d y_{1}\right)\right\} \prod_{k=2}^{\#\left(b^{\prime}\right)} \\
& \times\left\{\int f^{\infty} \sum_{b_{k} \in T} P\left(s, b_{k}\left(\boldsymbol{x}_{k}\right), t, d y_{k}\right)\right\} P\left(t, b^{\prime}(\boldsymbol{y}), u, E\right) \\
& =\int_{R} P^{(f)}\left(s, x_{1}, t, d y_{1}\right) \sum_{b^{\prime} \in T} \int_{R \sharp\left(b^{\prime}\right)-1} \prod_{k=2}^{\#\left(b^{\prime}\right)} P_{s, t}^{(f)}\left(d y_{k}\right) P\left(t, b^{\prime}(\boldsymbol{y}), u, E\right)
\end{aligned}
$$

5) When f is a probability measure, these are the integrals by infinite direct products of f 's.
6) $P(s, b(x), t, E)$ is an abbreviation for $P((s, \cdots, s), b(x), t, E)$.

$$
=\int_{R} P^{(f)}\left(s, x_{1}, t, d y_{1}\right) \int_{\{1\} c}\left(P_{s, t}^{(f)}\right)^{\infty} \sum_{b^{\prime} \in T} P\left(t, b^{\prime}(\boldsymbol{y}), u, E\right),
$$

coinciding with the right side of (7) by (6).
b) Backward equation (2) for the minimal solution is proved by rewriting

$$
\begin{equation*}
P^{(f)}(s, r, x, t, E)=\int_{\{1\} c} f^{\infty} \sum_{b \in T} P((s, r, r, \cdots, r), b(\boldsymbol{x}), t, E), \quad r, s \leq t,^{7)} \tag{8}
\end{equation*}
$$ in two ways. First, noting that $b_{1} \times b_{2} \rightarrow b_{1}\left(\left(b_{0}, b_{2}\right) b_{0}, \cdots, b_{0}\right)$ is a one to one correspondence between $T \times T$ and $T-\left\{b_{0}\right\}$, and using (5), we have

$$
\begin{align*}
P^{(f)}(s, & \left.r, x_{1}, t, E\right)=\int_{\{11 c} f^{\infty}\left\{P\left(s, b_{0}\left(x_{1}\right), t, E\right)+\sum_{b \in T-\left\{b_{0}\right\}}\right. \\
& \times P((s, r, \cdots, r), b(x), t, E)\} \\
= & P_{0}\left(s, x_{1}, t, E\right)+\int_{\left\{11 c^{c}\right.} f^{\infty} \sum_{b_{1} \in T} \sum_{b_{2} \in T} P\left((s, r, \cdots, r), b_{1}\left(\left(b_{0}\left(x_{1}\right),\right.\right.\right. \\
& \left.\left.\times b_{2}\left(\boldsymbol{x}^{\prime}\right), \boldsymbol{x}^{\prime \prime}\right), t, E\right) \tag{9}\\
= & P_{0}\left(s, x_{1}, t, E\right)+\int_{\{1] c} f^{\infty} \sum_{b_{1} \in T} \sum_{b_{2} \in T} \int_{s \vee r}^{t} d \tau \int_{R 2} P\left(s, b_{0}\left(x_{1}\right), \tau, d y\right) \\
& \times P\left((r, \cdots, r), b_{2}\left(x^{\prime}\right), \tau, d y^{\prime}\right) q(\tau, y) \int_{R} \pi\left(y^{\prime} \mid \tau, y, d z\right) \\
& \times P\left((\tau, r, \cdots, r), b_{1}\left(z, x^{\prime \prime}\right), t, E\right) \\
= & P_{0}\left(s, x_{1}, t, E\right)+\int_{s \vee r}^{t} d \tau \int_{R^{2}} P_{0}\left(s, x_{1}, \tau, d y\right) P_{r, \tau}^{(f)}\left(d y^{\prime}\right) q(\tau, y) \int_{R} \\
& \times \pi\left(y^{\prime} \mid \tau, y, d z\right) P^{(f)}(\tau, r, z, t, E) .^{8)}
\end{align*}
$$

On the other hand, we can prove, by (4),

$$
\begin{equation*}
P^{(f)}(s, r, x, t, E)=P^{\left(P_{r}^{(f)}, s\right)}(s, x, t, E), \quad \text { for } \quad r \leq s \leq t,{ }^{9)} \tag{10}
\end{equation*}
$$

and hence (2) is obtained by substituting (10) into the left and the right extremes of (9) with r replaced by s_{0}. In fact, $P^{(f)}(s, r, x, t, E)$ is equal to

$$
\begin{aligned}
& \int_{\left\{11 c^{c}\right.} f^{\infty} \sum_{b \in T} \sum_{b} \int_{b^{\prime} \leq b} P\left((s, r, \cdots, r), b_{1}\left(\boldsymbol{x}_{1}\right), s, d y_{1}\right) \prod_{\substack{\left(b_{k} \in b\left(b^{\prime}\right) \\
k \geq 2\right.}} P(b) \\
& P\left(r, b_{k}\left(\boldsymbol{x}_{k}\right), s, d y_{k}\right) P\left(s, b^{\prime}(\boldsymbol{y}), t, E\right)
\end{aligned}
$$

(where b_{1} is the first of b / b^{\prime})
7) Intuitively, this is the probability that the particle, started at x_{1} at time s_{1}, is in the set E at time t after the interactions governed by b with other particles which started at time r with the common initial distribution f independently. Clearly, this reduces to $P^{(f)}(s, x, t, E)$ when $r=s$.
8) The corresponding equation of forward type is

$$
\begin{aligned}
& P^{(f)}(s, r, x, t, E)=P_{0}(s, x, t, E)+\int_{s \vee r}^{t} d \tau \int_{R^{2}} P^{(f)}(s, r, x, \tau, d y \\
& \quad \times P_{r, \tau}^{(f)}\left(d y^{\prime}\right) q(\tau, y) \int_{R} \pi\left(y^{\prime} \mid \tau, y, d z\right) P_{0}(\tau, z, t, E) .
\end{aligned}
$$

This is proved in a similar way, or by a successive approximation similar to the proof of (6). Note that this reduces to (1) when $r=s$.
9) In case $s \leq r \leq t, P^{(f)}(s, r, x, t, E)=\int_{R} P_{0}(s, x, r, d y) P^{(f)}(r, y, t, E)$.

$$
\begin{aligned}
= & \int_{(11] c} f^{\infty} \sum_{b^{c}, T \in T} \int_{R^{\sharp\left(b^{\prime}\right)}} \sum_{b_{1} \in T} P\left((s, r, \cdots, r), b_{1}\left(\boldsymbol{x}_{1}\right), s, d y_{1}\right) \prod_{k=2}^{\#\left(b^{\prime}\right)} \\
& \times \sum_{b_{k} \in T} P\left(r, b_{k}\left(\boldsymbol{x}_{k}\right), s, d y_{k}\right) P\left(s, b^{\prime}(\boldsymbol{y}), t, E\right) \\
= & \sum_{b^{\prime} \in T} \int_{R^{\sharp\left(b^{\prime}\right)}} \delta x_{1}\left(d y_{1}\right) \prod_{k=2}^{\#\left(b^{\prime}\right)} P_{r, s}^{(f)}\left(d y_{k}\right) P\left(s, b^{\prime}(\boldsymbol{y}), t, E\right)=P^{\left(P_{r}^{(f)}\right)\left(s, x_{1}, t, E\right),}
\end{aligned}
$$

since $P((s, r, \cdots, r), b(\boldsymbol{x}), s, E)=\delta_{x_{1}}(E)$ or 0 according as $b=b_{0}$ or not for $r \leq s$.
4. Let $b^{\prime} \leq b$ and define a substochastic measure on $\left(R^{\sharp\left(b^{\prime}\right)}, \mathcal{B}\left(R^{\sharp\left(b^{\prime}\right)}\right)\right)$ by
where

$$
P\left(b / b^{\prime}, \boldsymbol{s}, \boldsymbol{x}, t, d \boldsymbol{y}\right)=\prod_{b_{k} \in b / b^{\prime}} P\left(s_{k}, b_{k}\left(\boldsymbol{x}_{k}\right), t, d y_{k}\right),
$$

$$
\left.\boldsymbol{x}=\left(\boldsymbol{x}_{1}, \cdots, \boldsymbol{x}_{\sharp\left(b^{\prime}\right)}\right), s=\left(s_{1}, \cdots, s_{\#\left(b^{\prime}\right)}\right)\right)^{10)}
$$

Then, the following extension of (4) is proved easily.

$$
\begin{align*}
& P\left(b / b^{\prime}, s, \boldsymbol{x}, u, E\right)=\sum_{b^{\prime} \leq b^{\prime \prime} \leq b} \int_{R^{\#}\left(b^{\prime \prime}\right)} P\left(b / b^{\prime \prime}, s, \boldsymbol{x}, t, d \boldsymbol{y}\right) \\
& \quad \times P\left(b^{\prime \prime} / b^{\prime}, t, \boldsymbol{y}, u, E\right)^{11)}
\end{align*}
$$

Let $b \geq b_{1} \geq b_{2} \geq \cdots \geq b_{n}, t_{0} \leq t_{1} \leq \cdots \leq t_{n}, E_{1} \in \mathcal{B}\left(R^{\sharp\left(b_{1}\right)}\right), \cdots, E_{n}$ $\in \mathcal{B}\left(R^{\sharp\left(b_{n}\right)}\right)$, and let

$$
P\left(t_{0}, t_{1}, \cdots, t_{n} ; b, b_{1}, \cdots, b_{n} ; \boldsymbol{x}, E_{1}, \cdots, E_{n}\right)=\int_{E_{1}} P\left(b / b_{1}, t_{0}, \boldsymbol{x}, t_{1}, d \boldsymbol{x}_{1}\right) \int_{E_{2}}
$$

$$
\begin{align*}
& \times P\left(b^{1} / b_{2}, t_{1}, \boldsymbol{x}_{1}, t_{2}, d \boldsymbol{x}_{2}\right) \cdots \int_{E_{n-1}} P\left(b_{n-2} / b_{n-1}, t_{n-2}, \boldsymbol{x}_{n-2}, t_{n-1}, d \boldsymbol{x}_{n-1}\right) \tag{11}\\
& \times P\left(b_{n-1} / b_{n}, t_{n-1}, \boldsymbol{x}_{n-1}, t_{n}, E_{n}\right)
\end{align*}
$$

Then, a version of the consistency condition holds:

$$
\begin{aligned}
& P\left(t_{0}, t_{1}, t_{3}, \cdots, t_{n} ; b_{0}, b_{1}, b_{3}, \cdots, b_{n} ; \boldsymbol{x}, E_{1}, E_{3}, \cdots, E_{n}\right) \\
& =\sum_{b_{1} \geq b_{2} \geq b_{3}} P\left(t_{0}, t_{1}, t_{2}, t_{3}, \cdots, t_{n} ; b_{0}, b_{1}, b_{2}, \cdots, b_{n} ; \boldsymbol{x}, E_{1}, R^{\sharp\left(b_{2}\right)} E_{3}, \cdots, E_{n}\right),
\end{aligned}
$$

where we skipped t_{2} alone for simplicity. This suggests that (11) is the probability of a cylinder set of a probability space which describes all interactions suffered by the particular particle we are watching at.

References

[1] W. Feller: On the integro-differential equations of purely discontinuous Markov processes. Trans. Amer. Math. Soc., 48, 488-515 (1940) [erratum, 58, 474 (1945)].
[2] T. Ueno: A class of Markov processes with bounded, non-linear generators. Jap. J. Math., 38, 19-38 (1969).
[3] -: A class of purely discontinuous Markov processes with interactions. I, II. Proc. Japan Acad., 45, 348-353, 437-440 (1969).
[4] -: A class of Markov processes with interactions. I. Proc. Japan Acad., 45, 348-353 (1969).
10) Since $b / b_{0}=\{b\}, P\left(b / b_{0}, s, x, t, E\right)=P(s, b(x), t, E)$ and (4') reduces to (4) in case $b^{\prime}=b_{0}$.
11) $P\left(b / b^{\prime}, s, x, t, E\right)$ is an abbreviation for $P\left(b / b^{\prime},(s, \cdots, s), x, t, E\right)$.

