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1. Introduction. We will use the following notion and notations.
We mainly refer to [3]; see also [1].

Let T be a closed linear operator in a Banach space E, p(T) its re-
solvent set, and a(T) its spectrum. The dimension of the null space of
T, N(T), written a(T), will be called the kernel index of T and the de-
ficiency of the range T in E, R(T), written fl(T), will be called the de-
ficiency index of T. The index ,(T) is defined by

(T) c(T)-- (T).
If the operator T has a finite index, it is called a Fredholm oper-

ator.
We denote by ae(T) the set of all complex number 2 for which

T--2I is not a Fredholm operator with index zero and call it the essen-
tial spectrum of T. The set of points of 6(T) which is not an isolated
eigenvalue 2 of finite multiplicity, namely a(T--2I) c, will be denot-
ed by go(T). Here an isolated eigenvalue means an eigenvalue which is

an isolated point of the spectrum.
Let X be a Banach space and H a Hilbert space such that
i) XH, and the embedding mapping; X-H is continuous,

ii) X is dense in H.
The purpose of this paper is to prove the following theorem"
Theorem. Let T be a closed linear operator in X and essentially

self-ad]oint in H, that is, its smallest closed extension (or its closure)
in H is self-ad]oint. Then

ao(TIX)=ae,(TIX).
Here we denoted by T IX the operator considered in X. Similarly

we will denote by ’ the closure o T in H, 6(]H) the spectrum of ’ in

H and so on.
Since the index of the Fredholm operator is invariant under the

addition of compact operators [3, Theorem V.2.1], in particular, when
K is a linear compact operator in X,

ae(TIX)=ae.(T+KIX).
In addition, i K is symmetrizable, that is, symmetric with respect to
the inner product of H, T+K is essentially sel-adjoint [4, p. 288,
Theorem 4.4] and, by our Theorem
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ao(T X)-- ao(T +K IX).
When H-X, this relation is equivalent -to the classical H. Weyle’s

theorem.
J. Nieto proved the above Theorem in the case when T is bounded

in X [6]. We extended it to the unbounded operators (see also latter
Remark) and eliminate the needless part in his proof.

2. Basic Propositions and Lemmas. To prove Theorem we need
some propositions and lemmas.

Proposition 1 [3, Theorem V.1.6 and 1.8]. Let T be a closed oper-
ator on a Banach space E and r(E) be the Fredholm set; the set of all
complex number for which T--2I is a Fredholm operator. Then
is open in the complex plane and the index (T--I) is constant on the
connected component of Cr. The kernel index a(T--2I) is also con-
stant on it, with the possible exception of isolated points.

Proposition 2 [8, Theorem 9.2 and 9.6]. Let o be an isolated
point of 6(T) and Po be the corresponding spectral projection oper-
ator

PoX- 1 x -d, x e E
27:i -o= 21-- T

for sufficiently small positive e. Then the dimension of the range of
Po is finite if and only if (T--2oI) is zero.

Lemma 1 [5]. Let H and X be the spaces as in section 1. If T is
a bounded operator in X and symmetrizable, it is also bounded in H
(with respect to the norm of H).

Lemma 2. If the closed operator T in X is essentially self-ad]oint,
then

a(TIH)ca(TIX).
Proof. Let 20 be a real number belonging to the resolvent of

T--2oI is essentially self-adjoint and has a bounded right inverse S in
X. By Lemma 1 S is also bounded in H, so its closure S in H is defin-
ed on all of H and is a right inverse o T--2oI in H. This completes
the proo of Lemma 2.

:. Proof of Theorem. We are now in position to prove Theorem.
a) We first prove that i 20 is an isolated eigenvalue o finite

multiplicity, (T--2oI]X)is zero. The eigenvalue o T IX is also the
eigenvalue o T] H, since HX. Hence by the relation of Lemma 2,
the isolated eigenvalue 20 of T IX is the isolated eigenvalue of
Since TIH is sel-adjoint the eigenvalue 20 is a simple pole o T. If
we denote by P0- the projection associated with {20} o

(T- 2oI)Po,-O, 2or all x e H.
The restriction of P0 to X, written PoZ, is the corresponding spectral
projection of T IX and
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(T--2oI)PolxX=O, or all x e X.
Hence the range o PoX is contained in N(T--2olI X), the null space of
T--2oI in X and by the assumption the dimension of N(T--2oIIX),
namely a(T--2oIIX) is finite; therefore (PoX) is finite. By Proposi-
tion 2, it ollows that (T--2oI IX) is zero.

We note that 20 is shown to be a simple pole o T IX.
b) Now we prove the converse o a).
Let 0 e a(TIX) and (T-- oIIX)--O. By Proposition 1, (T-- 2IIX)

and a(T--2IIX) are constant for any 2 e V--{20}, where V is some
neighbourhood of 20. Since there exists 2’ of V belonging to the re-
solvent of T H,

N(T--2’I]H)--{O}, which shows that N(T--2’IIX)--{O}, namely
(T--’I[X)--O. Hence (T--I]X)--O, for any e V--{0}; conse-
quently (T--2I[X)--O, by the assumption that (T--2I]X)--O. Thus
we obtain the relation that

This implies that 20 is an isolated eigenvalue of T IX.
4. Remark. Under the weaker assumptions, Theorem holds.
Lemma I holds when the operator T is faithful; for the adjoint

operator T* o TIll, T*X is contained in X [2].
If any isolated spectrum o T IX is the isolated spectrum o T H,

and the isolated eigenvalues of T H are all poles, the part a) of the
proo of Theorem is similarly carried out. In act an isolated eigen-
value of T IX is also isolated or T]H since by the above remark Lemma
2 holds, and by the following Proposition the latter half of the proof
also holds.

Proposition 3 [7, Theorem 5.8-A]. I/20 is a pole of degree of
an operator T in a Banach space E,

(T--2oI)PoX--O, for all x of E,
and dimension of N((T-- 2oI)) <__ mc(T-- 2oI).

It is also easily seen that the part b) of the proof of Theorem holds
if the resolvent set of 1H is dense in the complex plane.
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